mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 02:31:46 +00:00
b0f27361f3
* sampling : avoid expensive softmax during greedy sampling ggml-ci * speculative : fix default RNG seed + set sparams.n_probs * Update tests/test-sampling.cpp Co-authored-by: slaren <slarengh@gmail.com> * sampling : add clarifying comment [no ci] --------- Co-authored-by: slaren <slarengh@gmail.com>
361 lines
14 KiB
C++
361 lines
14 KiB
C++
#include "ggml.h"
|
|
#include "llama.h"
|
|
|
|
#ifdef NDEBUG
|
|
#undef NDEBUG
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
static void dump(const llama_token_data_array * cur_p) {
|
|
for (size_t i = 0; i < cur_p->size; i++) {
|
|
printf("%d: %f (%f)\n", cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
|
|
}
|
|
}
|
|
|
|
#define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
|
|
|
|
#define APPLY(__cnstr, __cur_p) do { \
|
|
auto * cnstr = (__cnstr); \
|
|
llama_sampler_apply(cnstr, (__cur_p)); \
|
|
llama_sampler_free(cnstr); \
|
|
} while(0)
|
|
|
|
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
|
|
const size_t n_vocab = probs.size();
|
|
|
|
std::vector<llama_token_data> cur;
|
|
cur.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
const float logit = logf(probs[token_id]);
|
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
DUMP(&cur_p);
|
|
APPLY(llama_sampler_init_top_k(k), &cur_p);
|
|
DUMP(&cur_p);
|
|
|
|
GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < cur_p.size; i++) {
|
|
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
|
|
}
|
|
}
|
|
|
|
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
const size_t n_vocab = probs.size();
|
|
|
|
std::vector<llama_token_data> cur;
|
|
cur.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
const float logit = logf(probs[token_id]);
|
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
DUMP(&cur_p);
|
|
APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
|
|
DUMP(&cur_p);
|
|
|
|
GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < cur_p.size; i++) {
|
|
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
|
|
const size_t n_vocab = probs.size();
|
|
|
|
std::vector<llama_token_data> cur;
|
|
cur.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
const float logit = logf(probs[token_id]);
|
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
DUMP(&cur_p);
|
|
APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
|
|
DUMP(&cur_p);
|
|
|
|
GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < cur_p.size; i++) {
|
|
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
const size_t n_vocab = probs.size();
|
|
|
|
std::vector<llama_token_data> cur;
|
|
cur.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
const float logit = logf(probs[token_id]);
|
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
DUMP(&cur_p);
|
|
APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
|
|
DUMP(&cur_p);
|
|
APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
|
|
GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < cur_p.size; i++) {
|
|
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
const size_t n_vocab = probs.size();
|
|
|
|
std::vector<llama_token_data> cur;
|
|
cur.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
const float logit = logf(probs[token_id]);
|
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
DUMP(&cur_p);
|
|
APPLY(llama_sampler_init_typical(p, 1), &cur_p);
|
|
DUMP(&cur_p);
|
|
|
|
GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < cur_p.size; i++) {
|
|
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_penalties(
|
|
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
|
|
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
|
|
) {
|
|
GGML_ASSERT(probs.size() == expected_probs.size());
|
|
|
|
const size_t n_vocab = probs.size();
|
|
|
|
std::vector<llama_token_data> cur;
|
|
cur.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
const float logit = logf(probs[token_id]);
|
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
|
auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
|
|
|
|
for (size_t i = 0; i < last_tokens.size(); i++) {
|
|
llama_sampler_accept(sampler, last_tokens[i]);
|
|
}
|
|
|
|
APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
DUMP(&cur_p);
|
|
APPLY(sampler, &cur_p);
|
|
APPLY(llama_sampler_init_softmax(), &cur_p);
|
|
DUMP(&cur_p);
|
|
|
|
GGML_ASSERT(cur_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < cur_p.size; i++) {
|
|
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
|
|
) {
|
|
std::vector<llama_token_data> cur;
|
|
cur.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
const float logit = logf(token_id);
|
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
|
|
llama_token min_token_id = 0;
|
|
const llama_token max_token_id = n_vocab-1;
|
|
|
|
for (auto s : samplers_sequence) {
|
|
switch (s){
|
|
case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break;
|
|
case 'f': GGML_ABORT("tail_free test not implemented");
|
|
case 'y': GGML_ABORT("typical test not implemented");
|
|
case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break;
|
|
case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break;
|
|
case 't': GGML_ABORT("temperature test not implemented");
|
|
default : GGML_ABORT("Unknown sampler");
|
|
}
|
|
|
|
APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests
|
|
|
|
const int size = cur_p.size;
|
|
|
|
if (s == 'k') {
|
|
const int expected_size = std::min(size, top_k);
|
|
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
|
|
|
|
GGML_ASSERT(size == expected_size);
|
|
GGML_ASSERT(cur_p.data[0].id == max_token_id);
|
|
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
|
|
} else if (s == 'p') {
|
|
const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
|
|
const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
|
|
|
|
min_token_id = n_vocab;
|
|
int expected_size = 0;
|
|
int cumsum = 0;
|
|
do { // do-while because always at least one token is sampled
|
|
min_token_id--;
|
|
expected_size++;
|
|
|
|
cumsum += min_token_id;
|
|
} while (cumsum < softmax_numerator_target);
|
|
|
|
// token 0 has p == 0, need special consideration for cumsum because top_p immediately returns
|
|
if (min_token_id == 1) {
|
|
min_token_id--;
|
|
expected_size += 1;
|
|
}
|
|
|
|
GGML_ASSERT(size == expected_size);
|
|
GGML_ASSERT(cur_p.data[0].id == max_token_id);
|
|
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
|
|
} else if (s == 'm') {
|
|
int expected_size = ceilf((1.0f-min_p) * n_vocab);
|
|
expected_size = std::max(expected_size, 1);
|
|
expected_size = std::min(expected_size, size);
|
|
|
|
min_token_id = floorf(min_p * n_vocab);
|
|
min_token_id = std::max(min_token_id, 1);
|
|
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size));
|
|
min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
|
|
|
|
GGML_ASSERT(size == expected_size);
|
|
GGML_ASSERT(cur_p.data[0].id == max_token_id);
|
|
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
|
|
printf("Sampler queue %3s OK with n_vocab=%05zu top_k=%05d top_p=%f min_p=%f\n",
|
|
samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
|
|
}
|
|
|
|
static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector<llama_token_data> & data, int n_iter) {
|
|
std::vector<llama_token_data> cur(data.size());
|
|
std::copy(data.begin(), data.end(), cur.begin());
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
llama_sampler_apply(cnstr, &cur_p);
|
|
llama_sampler_reset(cnstr);
|
|
const int64_t t_start = ggml_time_us();
|
|
for (int i = 0; i < n_iter; i++) {
|
|
std::copy(data.begin(), data.end(), cur.begin());
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
|
llama_sampler_apply(cnstr, &cur_p);
|
|
llama_sampler_reset(cnstr);
|
|
}
|
|
const int64_t t_end = ggml_time_us();
|
|
llama_sampler_free(cnstr);
|
|
printf("%-42s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
|
|
}
|
|
|
|
#define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter))
|
|
|
|
static void test_perf() {
|
|
const int n_vocab = 1 << 17;
|
|
|
|
std::vector<llama_token_data> data;
|
|
|
|
data.reserve(n_vocab);
|
|
for (int i = 0; i < n_vocab; i++) {
|
|
const float logit = 2.0f*((float)(rand())/RAND_MAX - 0.5f);
|
|
data.emplace_back(llama_token_data{i, logit, 0.0f});
|
|
}
|
|
|
|
BENCH(llama_sampler_init_top_k (40), data, 32);
|
|
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
|
|
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
|
|
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
|
|
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
|
|
BENCH(llama_sampler_init_softmax (), data, 32);
|
|
}
|
|
|
|
int main(void) {
|
|
ggml_time_init();
|
|
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
|
|
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
|
|
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f);
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f);
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f);
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f);
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f);
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
|
|
|
|
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
|
|
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
|
|
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
|
|
|
|
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
|
|
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
|
|
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
|
|
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
|
|
|
|
test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
|
|
test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);
|
|
test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);
|
|
test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f);
|
|
test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f);
|
|
test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12);
|
|
|
|
test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f);
|
|
test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f);
|
|
test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f);
|
|
test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f);
|
|
test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f);
|
|
|
|
test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "km", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f);
|
|
test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f);
|
|
|
|
test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f);
|
|
test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f);
|
|
|
|
printf("OK\n");
|
|
|
|
test_perf();
|
|
|
|
return 0;
|
|
}
|