llama.cpp/common/common.h
2024-11-09 12:20:37 +02:00

599 lines
26 KiB
C++

// Various helper functions and utilities
#pragma once
#include "llama.h"
#include <string>
#include <vector>
#include <sstream>
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
#else
#define DIRECTORY_SEPARATOR '/'
#endif // _WIN32
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_lora_adapter_info {
std::string path;
float scale;
};
struct common_lora_adapter_container : common_lora_adapter_info {
struct llama_lora_adapter * adapter;
};
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const * LLAMA_COMMIT;
extern char const * LLAMA_COMPILER;
extern char const * LLAMA_BUILD_TARGET;
struct common_control_vector_load_info;
//
// CPU utils
//
struct cpu_params {
int n_threads = -1;
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
bool mask_valid = false; // Default: any CPU
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
bool strict_cpu = false; // Use strict CPU placement
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
};
int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();
//
// Common params
//
enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
LLAMA_EXAMPLE_PASSKEY,
LLAMA_EXAMPLE_IMATRIX,
LLAMA_EXAMPLE_BENCH,
LLAMA_EXAMPLE_SERVER,
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
LLAMA_EXAMPLE_EXPORT_LORA,
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_COUNT,
};
enum common_sampler_type {
COMMON_SAMPLER_TYPE_NONE = 0,
COMMON_SAMPLER_TYPE_DRY = 1,
COMMON_SAMPLER_TYPE_TOP_K = 2,
COMMON_SAMPLER_TYPE_TOP_P = 3,
COMMON_SAMPLER_TYPE_MIN_P = 4,
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
};
// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
DIMRE_METHOD_PCA,
DIMRE_METHOD_MEAN,
};
// sampler parameters
struct common_sampler_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float xtc_probability = 0.00f; // 0.0 = disabled
float xtc_threshold = 0.10f; // > 0.5 disables XTC
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
COMMON_SAMPLER_TYPE_MIN_P,
COMMON_SAMPLER_TYPE_XTC,
COMMON_SAMPLER_TYPE_TEMPERATURE,
};
std::string grammar; // optional BNF-like grammar to constrain sampling
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
// print the parameters into a string
std::string print() const;
};
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = 0.1f; // KV cache defragmentation threshold
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
struct cpu_params draft_cpuparams;
struct cpu_params draft_cpuparams_batch;
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
struct common_sampler_params sparams;
std::string model = ""; // model path // NOLINT
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
std::string model_alias = "unknown"; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
bool kl_divergence = false; // compute KL divergence
bool usage = false; // print usage
bool use_color = false; // use color to distinguish generations and inputs
bool special = false; // enable special token output
bool interactive = false; // interactive mode
bool interactive_first = false; // wait for user input immediately
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = true; // context shift on inifinite text generation
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
std::vector<std::string> image; // path to image file(s)
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embeddings
bool reranking = false; // enable reranking support on server
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool enable_chat_template = true;
std::vector<std::string> api_keys;
std::string ssl_file_key = ""; // NOLINT
std::string ssl_file_cert = ""; // NOLINT
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = false;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
bool log_json = false;
std::string slot_save_path;
float slot_prompt_similarity = 0.5f;
// batched-bench params
bool is_pp_shared = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
std::vector<int32_t> n_pl;
// retrieval params
std::vector<std::string> context_files; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
// passkey params
int32_t n_junk = 250; // number of times to repeat the junk text
int32_t i_pos = -1; // position of the passkey in the junk text
// imatrix params
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
// cvector-generator params
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_outfile = "control_vector.gguf";
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
};
// call once at the start of a program if it uses libcommon
// initializes the logging system and prints info about the build
void common_init();
std::string common_params_get_system_info(const common_params & params);
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
bool set_process_priority(enum ggml_sched_priority prio);
//
// String utils
//
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
#endif
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
std::string string_format(const char * fmt, ...);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
template<>
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
{
std::vector<std::string> parts;
size_t begin_pos = 0;
size_t separator_pos = input.find(separator);
while (separator_pos != std::string::npos) {
std::string part = input.substr(begin_pos, separator_pos - begin_pos);
parts.emplace_back(part);
begin_pos = separator_pos + 1;
separator_pos = input.find(separator, begin_pos);
}
parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
return parts;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
std::string string_from(bool value);
std::string string_from(const std::vector<int> & values);
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
//
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_create_directory_with_parents(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
//
// Model utils
//
struct common_init_result {
struct llama_model * model = nullptr;
struct llama_context * context = nullptr;
std::vector<common_lora_adapter_container> lora_adapters;
};
struct common_init_result common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama (const common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
// clear LoRA adapters from context, then apply new list of adapters
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
// Batch utils
void common_batch_clear(struct llama_batch & batch);
void common_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits);
//
// Vocab utils
//
// tokenizes a string into a vector of tokens
// should work similar to Python's `tokenizer.encode`
std::vector<llama_token> common_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_special,
bool parse_special = false);
std::vector<llama_token> common_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_special,
bool parse_special = false);
// tokenizes a token into a piece, optionally renders special/control tokens
// should work similar to Python's `tokenizer.id_to_piece`
std::string common_token_to_piece(
const struct llama_context * ctx,
llama_token token,
bool special = true);
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// optionally renders special/control tokens
std::string common_detokenize(
llama_context * ctx,
const std::vector<llama_token> & tokens,
bool special = true);
//
// Chat template utils
//
// same with llama_chat_message, but uses std::string
struct common_chat_msg {
std::string role;
std::string content;
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl);
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass);
// Returns an example of formatted chat
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
//
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
//
// Control vector utils
//
struct common_control_vector_data {
int n_embd;
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std::vector<float> data;
};
struct common_control_vector_load_info {
float strength;
std::string fname;
};
// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
//
// Split utils
//
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
//
// YAML utils
//
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
void yaml_dump_non_result_info(
FILE * stream, const common_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);