llama.cpp/tests/test-grad0.cpp
2024-11-03 01:30:12 +01:00

1685 lines
57 KiB
C++

#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
#include "ggml.h"
#include "ggml-cpu.h"
#include <cfloat>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cassert>
#include <initializer_list>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
#define MAX_NARGS 3
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_SILU_FP16
//
// logging
//
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
#define GGML_PRINT(...) printf(__VA_ARGS__)
static float frand(void) {
return (float)rand()/(float)RAND_MAX;
}
static int irand(int n) {
if (n == 0) return 0;
return rand()%n;
}
static void get_random_dims(int64_t * dims, int ndims) {
dims[0] = dims[1] = dims[2] = dims[3] = 1;
for (int i = 0; i < ndims; i++) {
dims[i] = 1 + irand(4);
}
}
static struct ggml_tensor * get_random_tensor_f32(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
float fmin,
float fmax) {
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
}
break;
default:
assert(false);
}
return result;
}
static struct ggml_tensor * get_random_tensor_f16(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
float fmin,
float fmax) {
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F16, ndims, ne);
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
}
}
break;
default:
assert(false);
}
return result;
}
static struct ggml_tensor * get_random_tensor_i32(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
int32_t imin,
int32_t imax) {
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_I32, ndims, ne);
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((int32_t *)result->data)[i0] = irand(imax - imin) + imin;
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((int32_t *)result->data)[i1*ne[0] + i0] = irand(imax - imin) + imin;
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((int32_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin;
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((int32_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = irand(imax - imin) + imin;
}
}
}
}
break;
default:
assert(false);
}
return result;
}
static bool check_gradient(
const char * op_name,
struct ggml_context * ctx0,
struct ggml_tensor * x[],
struct ggml_tensor * f,
int ndims,
int nargs,
float eps,
float max_error_abs,
float max_error_rel,
std::vector<double> expected_vals) {
static int n_threads = -1;
if (n_threads < 0) {
n_threads = GGML_DEFAULT_N_THREADS;
const char *env = getenv("GGML_N_THREADS");
if (env) {
n_threads = atoi(env);
}
printf("GGML_N_THREADS = %d\n", n_threads);
}
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
struct ggml_cgraph * gb = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
ggml_build_forward_expand(gf, f);
ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx0, gf, gb, false);
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
ggml_graph_reset(gb);
if (f->grad) {
ggml_set_f32(f->grad, 1.0f);
}
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
// ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot");
// ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot");
for (int i = 0; i < nargs; ++i) {
bool all_g0_bad = true;
const int nelements = ggml_nelements(x[i]);
for (int k = 0; k < nelements; ++k) {
// Calculate gradient numerically:
const float x0 = ggml_get_f32_1d(x[i], k);
const float xm = x0 - eps;
const float xp = x0 + eps;
ggml_set_f32_1d(x[i], k, xp);
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
const double f0 = ggml_get_f32_1d(f, 0);
ggml_set_f32_1d(x[i], k, xm);
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
const double f1 = ggml_get_f32_1d(f, 0);
const double g0 = (f0 - f1)/(2.0*(double) eps);
// The numerical calculation of the gradient fails around noncontinuities (e.g. 0 for ReLU).
// In such cases, provide a vector of expected values and skip the comparison for failed calculations.
if (!expected_vals.empty()) {
bool matches_any = false;
for (const double & ev : expected_vals) {
const double error_abs = std::fabs(g0 - ev);
if (error_abs > max_error_abs) {
continue;
}
const double error_rel = g0 != 0.0 ? fabs(g0 - ev)/fabs(g0) : 0.0;
if (error_rel > max_error_rel) {
continue;
}
matches_any = true;
break;
}
if (!matches_any) {
continue;
}
}
all_g0_bad = false;
ggml_set_f32_1d(x[i], k, x0);
// compute gradient using backward graph
ggml_graph_reset(gb);
if (f->grad) {
ggml_set_f32(f->grad, 1.0f);
}
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
const double g1 = ggml_get_f32_1d(x[i]->grad, k);
const double error_abs = fabs(g0 - g1);
const double error_rel = g0 != 0.0 ? fabs(g0 - g1)/fabs(g0) : 0.0;
if (error_abs > max_error_abs || error_rel > max_error_rel) {
printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n",
op_name, ndims, i, k, x0, xm, xp, f0, f1, g0, g1, eps, error_abs, error_rel);
//assert(false);
return false;
}
}
if (all_g0_bad) {
printf("%s: numerical calculation of the gradient failed for all values\n", op_name);
return false;
}
}
return true;
}
// TODO: clean-up this ..
static bool check_mat_mul(
const struct ggml_tensor * y,
const struct ggml_tensor * x0,
const struct ggml_tensor * x1) {
float * dst = (float *) y->data;
float * src0 = (float *) x0->data;
float * src1 = (float *) x1->data;
const int nc = x0->ne[1];
const int nr = x1->ne[1];
const int nk = x0->ne[0];
GGML_PRINT_DEBUG("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk);
GGML_PRINT_DEBUG("x0:\n");
for (int j = 0; j < x0->ne[1]; ++j) {
for (int i = 0; i < x0->ne[0]; ++i) {
GGML_PRINT_DEBUG("%6.3f ", src0[j*nk + i]);
}
GGML_PRINT_DEBUG("\n");
}
GGML_PRINT_DEBUG("\n");
GGML_PRINT_DEBUG("x1:\n");
for (int j = 0; j < x1->ne[1]; ++j) {
for (int i = 0; i < x1->ne[0]; ++i) {
GGML_PRINT_DEBUG("%6.3f ", src1[j*nk + i]);
}
GGML_PRINT_DEBUG("\n");
}
GGML_PRINT_DEBUG("\n");
GGML_PRINT_DEBUG("y: n_dims = %d, (%lld, %lld)\n", y->n_dims, y->ne[0], y->ne[1]);
for (int j = 0; j < y->ne[1]; ++j) {
for (int i = 0; i < y->ne[0]; ++i) {
GGML_PRINT_DEBUG("%6.3f ", dst[j*nr + i]);
}
GGML_PRINT_DEBUG("\n");
}
for (int i = 0; i < nr; ++i) {
for (int j = 0; j < nc; ++j) {
float sum = 0.0f;
for (int k = 0; k < nk; ++k) {
sum += src0[j*nk + k]*src1[i*nk + k];
}
if (fabsf(dst[i*nc + j] - sum) > 1e-5f) {
fprintf(stderr, "check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum);
assert(false);
return false;
}
}
}
return true;
}
#define NUM_PERMUTATIONS (4*3*2*1)
int main(int argc, const char ** argv) {
struct ggml_init_params params = {
/* .mem_size = */ 256*1024*1024,
/* .mem_buffer = */ NULL,
/* .no_alloc = */ false,
};
int64_t ne[4];
int all_permutations[4 * NUM_PERMUTATIONS];
{
int count = 0;
for (int ax0=0; ax0<4; ++ax0) {
for (int ax1=0; ax1<4; ++ax1) {
if (ax1 == ax0) continue;
for (int ax2=0; ax2<4; ++ax2) {
if (ax2 == ax0) continue;
if (ax2 == ax1) continue;
for (int ax3=0; ax3<4; ++ax3) {
if (ax3 == ax0) continue;
if (ax3 == ax1) continue;
if (ax3 == ax2) continue;
assert(count < NUM_PERMUTATIONS);
all_permutations[count*4+0] = ax0;
all_permutations[count*4+1] = ax1;
all_permutations[count*4+2] = ax2;
all_permutations[count*4+3] = ax3;
++count;
}
}
}
}
}
unsigned seed_iter = 1;
// original loop: 1000
int niter = 4;
const char *env = getenv("GGML_NLOOP");
if (env != NULL) {
niter = atoi(env);
}
if (argc > 1) {
niter = atoi(argv[1]);
}
for (int iter = 0; iter < niter; ++iter) {
srand(seed_iter);
seed_iter = rand();
unsigned seed = rand();
printf("test-grad0: iter:%d/%d\n", (iter+1), niter);
struct ggml_context * ctx0 = ggml_init(params);
get_random_dims(ne, 4);
struct ggml_tensor * x[MAX_NARGS];
// add f32
{
srand(seed);
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
check_gradient("add f32", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f, {});
}
}
// add f16
{
srand(seed);
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
check_gradient("add f16", ctx0, x, f, ndims, nargs, 1e-1f, 2e-1f, 2e-1f, {});
}
}
// sub
{
srand(seed);
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1]));
check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// mul
{
srand(seed);
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1]));
check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// div
{
srand(seed);
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 0.5f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1]));
check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, 1e-1f, 1e-1f, {});
}
}
// sqr
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0]));
check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// sqrt
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0]));
check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, 2e-2f, 1e-1f, {});
}
}
// log
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_log(ctx0, x[0]));
check_gradient("log", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f, {});
}
}
// sum
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, x[0]);
check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// sum_rows
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sum_rows(ctx0, x[0])));
check_gradient("sum_rows", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {});
}
}
// mean, not yet fully implemented
if(0)
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_mean(ctx0, x[0]));
check_gradient("mean", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// argmax
if (0)
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_argmax(ctx0, x[0]));
check_gradient("argmax", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// repeat
{
srand(seed);
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] = ne[0] * ne2[0];
ne2[1] = ne[1] * ne2[1];
ne2[2] = 1;
ne2[3] = 1;
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[1], ggml_repeat(ctx0, x[0], x[1]))));
check_gradient("repeat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {});
}
}
// repeat back
{
srand(seed);
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] = ne[0] * ne2[0];
ne2[1] = ne[1] * ne2[1];
ne2[2] = 1;
ne2[3] = 1;
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[0], ggml_repeat_back(ctx0, x[1], x[0]))));
check_gradient("repeat back", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY, {});
}
}
// abs
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0]));
check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f, {-1.0, 1.0});
}
}
// sgn
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_sgn(ctx0, x[0]));
check_gradient("sgn", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {0.0});
}
}
// neg
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_neg(ctx0, x[0]));
check_gradient("neg", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// step
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_step(ctx0, x[0]));
check_gradient("step", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {0.0});
}
}
// tanh, not yet fully implemented
if(0)
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_tanh(ctx0, x[0]));
check_gradient("tanh", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// mul_mat
{
srand(seed);
const int nargs = 2;
for (int ndims = 2; ndims <= 4; ++ndims) {
int max_nrep = (ndims >= 3) ? 2 : 1;
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) {
for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) {
{
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] = ne[0];
ne2[2] = nrep2 * ne[2];
ne2[3] = nrep3 * ne[3];
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
}
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, m);
GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims);
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
if (ndims == 2) {
// check_mat_mul does not support ndims > 2
check_mat_mul(m, x[1], x[0]);
}
}
}
}
}
// elu, not yet fully implemented
if(0)
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_elu(ctx0, x[0]));
check_gradient("elu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// relu
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_relu(ctx0, x[0]));
check_gradient("relu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {0.0, 1.0});
}
}
// gelu, not yet fully implemented
if(0)
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_gelu(ctx0, x[0]));
check_gradient("gelu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f, {});
}
}
// silu
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_silu(ctx0, x[0]));
#ifdef GGML_SILU_FP16
// due to GGML_SILU_FP16 the finite difference method will be slightly wrong -> increase error bounds.
check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 0.5, INFINITY, {});
#else
check_gradient("silu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
#endif
}
}
// rms_norm
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0], 1e-6f));
check_gradient("rms_norm", ctx0, x, f, ndims, nargs, 1e-4f, 1.0f, INFINITY, {});
}
}
// scale
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
const float s = -1.0f + 2.0f*frand();
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], s));
check_gradient("scale", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// cpy f32
{
srand(seed);
const int nargs = 2;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
check_gradient("cpy f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// cpy f16
{
srand(seed);
const int nargs = 2;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
check_gradient("cpy f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY, {});
}
}
// reshape (1d->nd)
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
int64_t ne2[4];
ne2[0] = 1;
ne2[1] = 1;
ne2[2] = 1;
ne2[3] = 1;
for (int i = 0; i < ndims; ++i) {
ne2[0] *= ne[i];
}
x[0] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1]));
check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// reshape (nd->1d)
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
int64_t ne2[4];
ne2[0] = 1;
ne2[1] = 1;
ne2[2] = 1;
ne2[3] = 1;
for (int i = 0; i < ndims; ++i) {
ne2[0] *= ne[i];
}
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_reshape(ctx0, x[0], x[1]));
check_gradient("reshape", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// acc 1d
{
srand(seed);
int64_t ne2[4] = { 1, 1, 1, 1 };
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 1);
while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) {
get_random_dims(ne2, 1);
}
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
const int offset = irand(max_offset) * ggml_element_size(x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
check_gradient("acc 1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// acc 2d
{
srand(seed);
int64_t ne2[4] = { 1, 1, 1, 1 };
int64_t max_offsets[4] = { 0, 0, 0, 0 };
int64_t offsets[4] = { 0, 0, 0, 0 };
const int nargs = 2;
for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 2);
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) {
get_random_dims(ne2, 2);
}
x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
const int offset = offsets[0] + offsets[1];
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
check_gradient("acc 2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// acc 3d
{
srand(seed);
int64_t ne2[4] = { 1, 1, 1, 1 };
int64_t max_offsets[4] = { 0, 0, 0, 0 };
int64_t offsets[4] = { 0, 0, 0, 0 };
const int nargs = 2;
for (int ndims = 3; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 3);
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0]))) {
get_random_dims(ne2, 3);
}
x[1] = get_random_tensor_f32(ctx0, 3, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]);
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
offsets[2] = irand(max_offsets[2]) * x[0]->nb[2];
const int offset = offsets[0] + offsets[1] + offsets[2];
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
check_gradient("acc 3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// acc 4d
{
srand(seed);
int64_t ne2[4] = { 1, 1, 1, 1 };
int64_t max_offsets[4] = { 0, 0, 0, 0 };
int64_t offsets[4] = { 0, 0, 0, 0 };
const int nargs = 2;
for (int ndims = 4; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 4);
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[3] > ne[3]) || (ne2[0]*ne2[1]*ne2[2]*ne2[3] > ggml_nelements(x[0]))) {
get_random_dims(ne2, 4);
}
x[1] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]);
max_offsets[3] = MAX(0, x[0]->ne[3] - x[1]->ne[3]);
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
offsets[2] = irand(max_offsets[2]) * x[0]->nb[2];
offsets[3] = irand(max_offsets[3]) * x[0]->nb[3];
const int offset = offsets[0] + offsets[1] + offsets[2] + offsets[3];
struct ggml_tensor * f = ggml_sum(ctx0, ggml_acc(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
check_gradient("acc 4d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// set_1d
{
srand(seed);
int64_t ne2[4];
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 1);
while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) {
get_random_dims(ne2, 1);
}
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
const int offset = irand(max_offset) * ggml_element_size(x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_1d(ctx0, x[0], x[1], offset));
check_gradient("set_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// set_2d
{
srand(seed);
int64_t ne2[4];
int64_t max_offsets[4] = { 0, 0, 0, 0 };
int64_t offsets[4] = { 0, 0, 0, 0 };
const int nargs = 1;
for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 2);
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) {
get_random_dims(ne2, 2);
}
x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
const int offset = offsets[0] + offsets[1];
struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_2d(ctx0, x[0], x[1], x[1]->nb[1], offset));
check_gradient("set_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// view_1d
{
srand(seed);
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
const int k0 = irand(ggml_nelements(x[0]));
const int k1 = irand(ggml_nelements(x[0]));
const int i0 = MIN(k0, k1);
const int i1 = MAX(k0, k1);
const int offset = i0 * sizeof(float);
const int nelem = i1 - i0;
struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_1d(ctx0, x[0], nelem, offset));
check_gradient("view_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// view_2d
{
srand(seed);
int64_t ne2[4];
int64_t nb2[4];
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
get_random_dims(ne2, 2);
while (ne2[0]*ne2[1] > ggml_nelements(x[0])) {
get_random_dims(ne2, 2);
}
const int count = ne2[0]*ne2[1];
nb2[0] = sizeof(float);
nb2[1] = nb2[0]*ne2[0];
ggml_set_param(ctx0, x[0]);
const int max_offset = ggml_nelements(x[0]) - count;
const int offset = irand(max_offset+1) * sizeof(float);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_2d(ctx0, x[0], ne2[0], ne2[1], nb2[1], offset));
check_gradient("view_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// view_3d
{
srand(seed);
int64_t ne2[4] = {1,1,1,1};
int64_t nb2[4] = {0,0,0,0};
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
get_random_dims(ne2, 3);
while (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0])) {
get_random_dims(ne2, 3);
}
const int count = ne2[0]*ne2[1]*ne2[2];
nb2[0] = sizeof(float);
nb2[1] = nb2[0]*ne2[0];
nb2[2] = nb2[1]*ne2[1];
ggml_set_param(ctx0, x[0]);
const int max_offset = ggml_nelements(x[0]) - count;
const int offset = irand(max_offset+1) * sizeof(float);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_view_3d(ctx0, x[0], ne2[0], ne2[1], ne2[2], nb2[1], nb2[2], offset));
check_gradient("view_3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// permute
{
srand(seed);
int64_t ne2[4];
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims)
{
// ggml_permute will set axes of dimensions below n_dims to 1.
// to make ggml_permute work correctly on all axes,
// the input tensor needs maximal n_dim of 4.
for (int i=0; i<ndims; ++i) {
ne2[i] = ne[i];
}
for (int i=ndims; i<4; ++i) {
ne2[i] = 1;
}
x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
const int p = irand(NUM_PERMUTATIONS);
const int ax0 = all_permutations[p*4+0];
const int ax1 = all_permutations[p*4+1];
const int ax2 = all_permutations[p*4+2];
const int ax3 = all_permutations[p*4+3];
// sum requires contiguous tensor rows
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cont(ctx0, ggml_permute(ctx0, x[0], ax0, ax1, ax2, ax3)));
check_gradient("permute", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// transpose
{
srand(seed);
int64_t ne2[4];
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims)
{
// ggml_transpose will set axes of dimensions below n_dims to 1.
// to make ggml_transpose work correctly on all axes,
// the input tensor needs maximal n_dim of 4.
for (int i=0; i<ndims; ++i) {
ne2[i] = ne[i];
}
for (int i=ndims; i<4; ++i) {
ne2[i] = 1;
}
x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
// sum requires contiguous tensor rows
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, x[0])));
check_gradient("transpose", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// get_rows
{
srand(seed);
int64_t ne2[4] = {ne[0], ne[1], 1, 1};
int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1};
const int nargs = 1;
const int ndims = 2;
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_i32(ctx0, 1, ne3, 0, ne2[1]);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_get_rows(ctx0, x[0], x[1]));
check_gradient("get_rows", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
// diag_mask_inf
{
srand(seed);
const int nargs = 1;
const int ndims = 2;
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
int n_past = irand(ne[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_diag_mask_inf(ctx0, x[0], n_past));
check_gradient("diag_mask_inf", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
// diag_mask_zero
{
srand(seed);
const int nargs = 1;
const int ndims = 2;
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
int n_past = irand(ne[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_diag_mask_zero(ctx0, x[0], n_past));
check_gradient("diag_mask_zero", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
// softmax
{
srand(seed);
const int nargs = 1;
int64_t ne2[4];
get_random_dims(ne2, 4);
for (int ndims = 1; ndims <= 3; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
float eps = 1e-6f;
// dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
// instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
struct ggml_tensor * f = ggml_sum(ctx0,
ggml_log(ctx0,
ggml_add1(ctx0,
ggml_scale(ctx0,
ggml_soft_max(ctx0, x[0]),
1.0f - eps),
ggml_new_f32(ctx0, eps))));
check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY, {});
// NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf.
// this may result in different gradients too finite differences.
// when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause.
// if only the table lookup causes gradients to differ this is acceptable.
}
}
// cross_entropy_loss
{
srand(seed);
const int nargs = 1;
int64_t ne2[4];
get_random_dims(ne2, 4);
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, 0.0f, 1.0f);
// the second argument to cross_entropy_loss must sum up to 1 for each row
int nr = ggml_nrows(x[1]);
int nc = ggml_nelements(x[1]) / nr;
for (int ir = 0; ir < nr; ++ir) {
float sum = 0;
for (int ic = 0; ic < nc; ++ic) {
sum += ((float *) x[1]->data)[ic + ir*nc];
}
for (int ic = 0; ic < nc; ++ic) {
((float *) x[1]->data)[ic + ir*nc] /= sum;
}
}
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_cross_entropy_loss(ctx0, x[0], x[1]);
check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, {});
}
}
// rope f32
{
srand(seed);
const int nargs = 1;
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] += ne2[0] % 2;
int n_rot = ne2[0];
for (int ndims = 3; ndims <= 4; ++ndims) {
for (int mode = 0; mode < 4; ++mode) {
for (int n_past = 1; n_past < ne2[2]; ++n_past) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]);
for (int i = 0; i < ne2[2]; ++i) {
((int32_t *) p->data)[i] = n_past + i;
}
ggml_set_param(ctx0, x[0]);
const bool skip_past = (mode & 1);
if (skip_past) {
// we have no past, so this would have to work on uninitialized memory.
// we only test the gradients here;
// skip_past should have no influence on gradient computation.
// so when other modes work, we assume that this does as well.
continue;
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode));
GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY, {});
}
}
}
}
// rope f16
{
srand(seed);
const int nargs = 1;
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] += ne2[0] % 2;
int n_rot = ne2[0];
for (int ndims = 3; ndims <= 4; ++ndims) {
for (int mode = 0; mode < 4; ++mode) {
for (int n_past = 1; n_past < ne2[2]; ++n_past) {
x[0] = get_random_tensor_f16(ctx0, ndims, ne2, -1.0f, 1.0f);
struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]);
for (int i = 0; i < ne2[2]; ++i) {
((int32_t *) p->data)[i] = n_past + i;
}
ggml_set_param(ctx0, x[0]);
const bool skip_past = (mode & 1);
if (skip_past) {
// we have no past, so this would have to work on uninitialized memory.
// we only test the gradients here;
// skip_past should have no influence on gradient computation.
// so when other modes work, we assume that this does as well.
continue;
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode));
GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY, {});
}
}
}
}
// im2col f32
{
srand(seed);
const int nargs = 1;
const int ndims = 4;
for (const bool is_2D : {false, true}) {
int64_t ne0[ndims];
int64_t ne1[ndims];
get_random_dims(ne0, ndims);
get_random_dims(ne1, ndims);
// // Ensure that the output is not zero-sized:
ne1[0] += 8;
ne1[1] += 8;
if (is_2D) {
ne1[2] = ne0[2];
} else {
ne1[1] = ne0[1];
ne0[3] = 1;
ne1[3] = 1;
}
// The order of arguments is swapped because the first tensor is only used for its shape.
x[1] = get_random_tensor_f16(ctx0, ndims, ne0, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne1, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
const int s0 = 1 + irand(2);
const int s1 = is_2D ? 1 + irand(2) : 0;
const int p0 = 0 + irand(2);
const int p1 = is_2D ? 0 + irand(2) : 0;
const int d0 = 1 + irand(2);
const int d1 = is_2D ? 1 + irand(2) : 0;
struct ggml_tensor * f = ggml_sum(ctx0, ggml_im2col(ctx0, x[1], x[0], s0, s1, p0, p1, d0, d1, is_2D, GGML_TYPE_F32));
GGML_PRINT_DEBUG("im2col f32: is_2D=%s, s0=%d, s1=%d, p0=%d, p1=%d, d0=%d, d1=%d\n", is_2D ? "yes" : "no", s0, s1, p0, p1, d0, d1);
check_gradient("im2col f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY, {});
}
}
// pool_2d f32
{
srand(seed);
const int nargs = 1;
const int ndims = 4;
for (const enum ggml_op_pool op : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
int64_t ne0[ndims];
get_random_dims(ne0, ndims);
ne0[0] += 8;
ne0[1] += 8;
x[0] = get_random_tensor_f32(ctx0, ndims, ne0, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
const int k0 = 2 + irand(2);
const int k1 = 2 + irand(2);
const int s0 = 2 + irand(2);
const int s1 = 2 + irand(2);
const int p0 = 0 + irand(2);
const int p1 = 0 + irand(2);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_pool_2d(ctx0, x[0], op, k0, k1, s0, s1, p0, p1));
GGML_PRINT_DEBUG("ggml_pool_2d f32: op=%s k0=%d, k1=%d, s0=%d, s1=%d, p0=%d, p1=%d\n",
op == GGML_OP_POOL_MAX ? "max" : "avg", k0, k1, s0, s1, p0, p1);
std::vector<double> expected_vals;
if (op == GGML_OP_POOL_MAX) {
expected_vals.push_back(0.0);
expected_vals.push_back(1.0);
}
check_gradient("ggml_pool_2d f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY, expected_vals);
}
}
// flash_attn f32
// TODO: adapt to ggml_flash_attn_ext() changes
//{
// srand(seed);
// const int nargs = 3;
// int64_t ne2[4];
// get_random_dims(ne2, 4);
// int64_t D = ne2[0];
// int64_t N = ne2[1];
// int64_t M = ne2[2] + N;
// int64_t B = ne2[3];
// for (int masked = 0; masked <= 1; ++masked) {
// for (int ndims = 2; ndims <= 4; ++ndims) {
// int max_nrep = (ndims >= 3) ? 2 : 1;
// for (int nrep = 1; nrep < max_nrep; ++nrep) {
// int64_t neq[4] = { D, N, B*nrep, ne[3] };
// int64_t nek[4] = { D, M, B, ne[3] };
// int64_t nev[4] = { M, D, B, ne[3] };
// if (ndims == 2) {
// neq[2] = 1; neq[3] = 1;
// nek[2] = 1; nek[3] = 1;
// nev[2] = 1; nev[3] = 1;
// } else if (ndims == 3) {
// neq[3] = 1;
// nek[3] = 1;
// nev[3] = 1;
// }
// x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
// x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
// x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
// ggml_set_param(ctx0, x[0]);
// ggml_set_param(ctx0, x[1]);
// ggml_set_param(ctx0, x[2]);
// struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
// check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY, {});
// }
// }
// }
//}
ggml_free(ctx0);
}
return 0;
}