mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 23:34:35 +00:00
ae8de6d50a
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
* ggml : build backends as libraries --------- Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: R0CKSTAR <xiaodong.ye@mthreads.com>
8160 lines
262 KiB
C
8160 lines
262 KiB
C
#define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
|
||
#define _USE_MATH_DEFINES // For M_PI on MSVC
|
||
|
||
#include "ggml-backend.h"
|
||
#include "ggml-impl.h"
|
||
#include "ggml-threading.h"
|
||
#include "ggml.h"
|
||
|
||
// FIXME: required here for quantization functions
|
||
#include "ggml-quants.h"
|
||
#include "ggml-aarch64.h"
|
||
|
||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||
#include <alloca.h>
|
||
#endif
|
||
|
||
#include <assert.h>
|
||
#include <errno.h>
|
||
#include <time.h>
|
||
#include <math.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <stdint.h>
|
||
#include <inttypes.h>
|
||
#include <stdio.h>
|
||
#include <float.h>
|
||
#include <limits.h>
|
||
#include <stdarg.h>
|
||
#include <signal.h>
|
||
#if defined(__gnu_linux__)
|
||
#include <syscall.h>
|
||
#endif
|
||
|
||
#if defined(__APPLE__)
|
||
#include <unistd.h>
|
||
#include <mach/mach.h>
|
||
#include <TargetConditionals.h>
|
||
#endif
|
||
|
||
#if defined(_WIN32)
|
||
#define WIN32_LEAN_AND_MEAN
|
||
#ifndef NOMINMAX
|
||
#define NOMINMAX
|
||
#endif
|
||
#include <windows.h>
|
||
#endif
|
||
|
||
#define UNUSED GGML_UNUSED
|
||
|
||
// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
|
||
float ggml_table_f32_f16[1 << 16];
|
||
|
||
#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
|
||
(!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
|
||
#include <unistd.h>
|
||
#include <sys/types.h>
|
||
#include <sys/stat.h>
|
||
#include <sys/wait.h>
|
||
|
||
#if defined(__ANDROID__)
|
||
#include <unwind.h>
|
||
#include <dlfcn.h>
|
||
#include <stdio.h>
|
||
|
||
struct backtrace_state {
|
||
void ** current;
|
||
void ** end;
|
||
};
|
||
|
||
static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
|
||
struct backtrace_state * state = (struct backtrace_state *)arg;
|
||
uintptr_t pc = _Unwind_GetIP(context);
|
||
if (pc) {
|
||
if (state->current == state->end) {
|
||
return _URC_END_OF_STACK;
|
||
} else {
|
||
*state->current++ = (void*)pc;
|
||
}
|
||
}
|
||
return _URC_NO_REASON;
|
||
}
|
||
|
||
static void ggml_print_backtrace_symbols(void) {
|
||
const int max = 100;
|
||
void* buffer[max];
|
||
|
||
struct backtrace_state state = {buffer, buffer + max};
|
||
_Unwind_Backtrace(unwind_callback, &state);
|
||
|
||
int count = state.current - buffer;
|
||
|
||
for (int idx = 0; idx < count; ++idx) {
|
||
const void * addr = buffer[idx];
|
||
const char * symbol = "";
|
||
|
||
Dl_info info;
|
||
if (dladdr(addr, &info) && info.dli_sname) {
|
||
symbol = info.dli_sname;
|
||
}
|
||
|
||
fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
|
||
}
|
||
}
|
||
#elif defined(__linux__) && defined(__GLIBC__)
|
||
#include <execinfo.h>
|
||
static void ggml_print_backtrace_symbols(void) {
|
||
void * trace[100];
|
||
int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
|
||
backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
|
||
}
|
||
#else
|
||
static void ggml_print_backtrace_symbols(void) {
|
||
// platform not supported
|
||
}
|
||
#endif
|
||
|
||
static void ggml_print_backtrace(void) {
|
||
char attach[32];
|
||
snprintf(attach, sizeof(attach), "attach %d", getpid());
|
||
int pid = fork();
|
||
if (pid == 0) {
|
||
// try gdb
|
||
execlp("gdb", "gdb", "--batch",
|
||
"-ex", "set style enabled on",
|
||
"-ex", attach,
|
||
"-ex", "bt -frame-info source-and-location",
|
||
"-ex", "detach",
|
||
"-ex", "quit",
|
||
(char *) NULL);
|
||
// try lldb
|
||
execlp("lldb", "lldb", "--batch",
|
||
"-o", "bt",
|
||
"-o", "quit",
|
||
"-p", attach,
|
||
(char *) NULL);
|
||
exit(EXIT_FAILURE);
|
||
} else {
|
||
int wstatus;
|
||
waitpid(pid, &wstatus, 0);
|
||
if (WIFEXITED(wstatus)) {
|
||
if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
|
||
// gdb failed, fallback to backtrace_symbols
|
||
ggml_print_backtrace_symbols();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#else
|
||
static void ggml_print_backtrace(void) {
|
||
// platform not supported
|
||
}
|
||
#endif
|
||
|
||
void ggml_abort(const char * file, int line, const char * fmt, ...) {
|
||
fflush(stdout);
|
||
|
||
fprintf(stderr, "%s:%d: ", file, line);
|
||
|
||
va_list args;
|
||
va_start(args, fmt);
|
||
vfprintf(stderr, fmt, args);
|
||
va_end(args);
|
||
|
||
fprintf(stderr, "\n");
|
||
|
||
ggml_print_backtrace();
|
||
abort();
|
||
}
|
||
|
||
//
|
||
// logging
|
||
//
|
||
|
||
struct ggml_logger_state {
|
||
ggml_log_callback log_callback;
|
||
void * log_callback_user_data;
|
||
};
|
||
static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
|
||
|
||
static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
|
||
if (format == NULL) {
|
||
return;
|
||
}
|
||
va_list args_copy;
|
||
va_copy(args_copy, args);
|
||
char buffer[128];
|
||
int len = vsnprintf(buffer, 128, format, args);
|
||
if (len < 128) {
|
||
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
|
||
} else {
|
||
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
|
||
vsnprintf(buffer2, len + 1, format, args_copy);
|
||
buffer2[len] = 0;
|
||
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
|
||
free(buffer2);
|
||
}
|
||
va_end(args_copy);
|
||
}
|
||
|
||
void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
|
||
va_list args;
|
||
va_start(args, format);
|
||
ggml_log_internal_v(level, format, args);
|
||
va_end(args);
|
||
}
|
||
|
||
void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
|
||
(void) level;
|
||
(void) user_data;
|
||
fputs(text, stderr);
|
||
fflush(stderr);
|
||
}
|
||
|
||
//
|
||
// end of logging block
|
||
//
|
||
|
||
#ifdef GGML_USE_ACCELERATE
|
||
// uncomment to use vDSP for soft max computation
|
||
// note: not sure if it is actually faster
|
||
//#define GGML_SOFT_MAX_ACCELERATE
|
||
#endif
|
||
|
||
|
||
void * ggml_aligned_malloc(size_t size) {
|
||
const int alignment = 64;
|
||
|
||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||
return _aligned_malloc(size, alignment);
|
||
#else
|
||
if (size == 0) {
|
||
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
|
||
return NULL;
|
||
}
|
||
void * aligned_memory = NULL;
|
||
#ifdef GGML_USE_CPU_HBM
|
||
int result = hbw_posix_memalign(&aligned_memory, alignment, size);
|
||
#elif TARGET_OS_OSX
|
||
GGML_UNUSED(alignment);
|
||
kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE);
|
||
int result = EFAULT;
|
||
switch (alloc_status) {
|
||
case KERN_SUCCESS:
|
||
result = 0;
|
||
break;
|
||
case KERN_INVALID_ADDRESS:
|
||
result = EINVAL;
|
||
break;
|
||
case KERN_NO_SPACE:
|
||
result = ENOMEM;
|
||
break;
|
||
default:
|
||
result = EFAULT;
|
||
break;
|
||
}
|
||
#else
|
||
int result = posix_memalign(&aligned_memory, alignment, size);
|
||
#endif
|
||
if (result != 0) {
|
||
// Handle allocation failure
|
||
const char *error_desc = "unknown allocation error";
|
||
switch (result) {
|
||
case EINVAL:
|
||
error_desc = "invalid alignment value";
|
||
break;
|
||
case ENOMEM:
|
||
error_desc = "insufficient memory";
|
||
break;
|
||
}
|
||
GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
|
||
return NULL;
|
||
}
|
||
return aligned_memory;
|
||
#endif
|
||
}
|
||
|
||
void ggml_aligned_free(void * ptr, size_t size) {
|
||
GGML_UNUSED(size);
|
||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||
_aligned_free(ptr);
|
||
#elif GGML_USE_CPU_HBM
|
||
if (ptr != NULL) {
|
||
hbw_free(ptr);
|
||
}
|
||
#elif TARGET_OS_OSX
|
||
if (ptr != NULL) {
|
||
vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size);
|
||
}
|
||
#else
|
||
free(ptr);
|
||
#endif
|
||
}
|
||
|
||
|
||
inline static void * ggml_malloc(size_t size) {
|
||
if (size == 0) {
|
||
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
|
||
return NULL;
|
||
}
|
||
void * result = malloc(size);
|
||
if (result == NULL) {
|
||
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
return result;
|
||
}
|
||
|
||
// calloc
|
||
inline static void * ggml_calloc(size_t num, size_t size) {
|
||
if (num == 0 || size == 0) {
|
||
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
|
||
return NULL;
|
||
}
|
||
void * result = calloc(num, size);
|
||
if (result == NULL) {
|
||
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
return result;
|
||
}
|
||
|
||
#define GGML_MALLOC(size) ggml_malloc(size)
|
||
#define GGML_CALLOC(num, size) ggml_calloc(num, size)
|
||
|
||
#define GGML_FREE(ptr) free(ptr)
|
||
|
||
const char * ggml_status_to_string(enum ggml_status status) {
|
||
switch (status) {
|
||
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
|
||
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
|
||
case GGML_STATUS_SUCCESS: return "GGML status: success";
|
||
case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
|
||
}
|
||
|
||
return "GGML status: unknown";
|
||
}
|
||
|
||
float ggml_fp16_to_fp32(ggml_fp16_t x) {
|
||
#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
|
||
return GGML_FP16_TO_FP32(x);
|
||
}
|
||
|
||
ggml_fp16_t ggml_fp32_to_fp16(float x) {
|
||
#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
|
||
return GGML_FP32_TO_FP16(x);
|
||
}
|
||
|
||
float ggml_bf16_to_fp32(ggml_bf16_t x) {
|
||
#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
|
||
return GGML_BF16_TO_FP32(x); // it just left shifts
|
||
}
|
||
|
||
ggml_bf16_t ggml_fp32_to_bf16(float x) {
|
||
#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
|
||
return GGML_FP32_TO_BF16(x);
|
||
}
|
||
|
||
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
|
||
for (int64_t i = 0; i < n; i++) {
|
||
y[i] = GGML_FP16_TO_FP32(x[i]);
|
||
}
|
||
}
|
||
|
||
// FIXME: these functions must detect the instruction set at runtime, since they are part of the core ggml library
|
||
// currently, the ggml_cpu_has_* functions are entirely compile-time
|
||
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
|
||
int64_t i = 0;
|
||
#if defined(__F16C__)
|
||
//if (ggml_cpu_has_f16c()) {
|
||
for (; i + 7 < n; i += 8) {
|
||
__m256 x_vec = _mm256_loadu_ps(x + i);
|
||
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||
_mm_storeu_si128((__m128i *)(y + i), y_vec);
|
||
}
|
||
for(; i + 3 < n; i += 4) {
|
||
__m128 x_vec = _mm_loadu_ps(x + i);
|
||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||
}
|
||
//}
|
||
#endif
|
||
for (; i < n; i++) {
|
||
y[i] = GGML_FP32_TO_FP16(x[i]);
|
||
}
|
||
}
|
||
|
||
void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
|
||
int64_t i = 0;
|
||
#if defined(__AVX512F__)
|
||
//if (ggml_cpu_has_avx512()) {
|
||
for (; i + 16 <= n; i += 16) {
|
||
_mm512_storeu_ps(y + i,
|
||
_mm512_castsi512_ps(
|
||
_mm512_slli_epi32(
|
||
_mm512_cvtepu16_epi32(
|
||
_mm256_loadu_si256(
|
||
(const __m256i *)(x + i))),
|
||
16)));
|
||
}
|
||
//}
|
||
#endif
|
||
#if defined(__AVX2__)
|
||
//if (ggml_cpu_has_avx2()) {
|
||
for (; i + 8 <= n; i += 8) {
|
||
_mm256_storeu_ps(y + i,
|
||
_mm256_castsi256_ps(
|
||
_mm256_slli_epi32(
|
||
_mm256_cvtepu16_epi32(
|
||
_mm_loadu_si128(
|
||
(const __m128i *)(x + i))),
|
||
16)));
|
||
}
|
||
//}
|
||
#endif
|
||
for (; i < n; i++) {
|
||
y[i] = GGML_BF16_TO_FP32(x[i]);
|
||
}
|
||
}
|
||
|
||
void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
|
||
for (int i = 0; i < n; i++) {
|
||
y[i] = ggml_compute_fp32_to_bf16(x[i]);
|
||
}
|
||
}
|
||
|
||
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
|
||
int i = 0;
|
||
#if defined(__AVX512BF16__)
|
||
// subnormals are flushed to zero on this platform
|
||
for (; i + 32 <= n; i += 32) {
|
||
_mm512_storeu_si512(
|
||
(__m512i *)(y + i),
|
||
m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
|
||
_mm512_loadu_ps(x + i))));
|
||
}
|
||
#endif
|
||
for (; i < n; i++) {
|
||
y[i] = GGML_FP32_TO_BF16(x[i]);
|
||
}
|
||
}
|
||
|
||
bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
|
||
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
|
||
}
|
||
|
||
//
|
||
// timing
|
||
//
|
||
|
||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||
static int64_t timer_freq, timer_start;
|
||
void ggml_time_init(void) {
|
||
LARGE_INTEGER t;
|
||
QueryPerformanceFrequency(&t);
|
||
timer_freq = t.QuadPart;
|
||
|
||
// The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
|
||
// and the uptime is high enough.
|
||
// We subtract the program start time to reduce the likelihood of that happening.
|
||
QueryPerformanceCounter(&t);
|
||
timer_start = t.QuadPart;
|
||
}
|
||
int64_t ggml_time_ms(void) {
|
||
LARGE_INTEGER t;
|
||
QueryPerformanceCounter(&t);
|
||
return ((t.QuadPart-timer_start) * 1000) / timer_freq;
|
||
}
|
||
int64_t ggml_time_us(void) {
|
||
LARGE_INTEGER t;
|
||
QueryPerformanceCounter(&t);
|
||
return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
|
||
}
|
||
#else
|
||
void ggml_time_init(void) {}
|
||
int64_t ggml_time_ms(void) {
|
||
struct timespec ts;
|
||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
|
||
}
|
||
|
||
int64_t ggml_time_us(void) {
|
||
struct timespec ts;
|
||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
|
||
}
|
||
#endif
|
||
|
||
int64_t ggml_cycles(void) {
|
||
return clock();
|
||
}
|
||
|
||
int64_t ggml_cycles_per_ms(void) {
|
||
return CLOCKS_PER_SEC/1000;
|
||
}
|
||
|
||
//
|
||
// cross-platform UTF-8 file paths
|
||
//
|
||
|
||
#ifdef _WIN32
|
||
static wchar_t * ggml_mbstowcs(const char * mbs) {
|
||
int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
|
||
if (!wlen) {
|
||
errno = EINVAL;
|
||
return NULL;
|
||
}
|
||
|
||
wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
|
||
wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
|
||
if (!wlen) {
|
||
GGML_FREE(wbuf);
|
||
errno = EINVAL;
|
||
return NULL;
|
||
}
|
||
|
||
return wbuf;
|
||
}
|
||
#endif
|
||
|
||
FILE * ggml_fopen(const char * fname, const char * mode) {
|
||
#ifdef _WIN32
|
||
FILE * file = NULL;
|
||
|
||
// convert fname (UTF-8)
|
||
wchar_t * wfname = ggml_mbstowcs(fname);
|
||
if (wfname) {
|
||
// convert mode (ANSI)
|
||
wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
|
||
wchar_t * wmode_p = wmode;
|
||
do {
|
||
*wmode_p++ = (wchar_t)*mode;
|
||
} while (*mode++);
|
||
|
||
// open file
|
||
file = _wfopen(wfname, wmode);
|
||
|
||
GGML_FREE(wfname);
|
||
GGML_FREE(wmode);
|
||
}
|
||
|
||
return file;
|
||
#else
|
||
return fopen(fname, mode);
|
||
#endif
|
||
|
||
}
|
||
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
|
||
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
|
||
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
|
||
|
||
static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
|
||
[GGML_TYPE_I8] = {
|
||
.type_name = "i8",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(int8_t),
|
||
.is_quantized = false,
|
||
},
|
||
[GGML_TYPE_I16] = {
|
||
.type_name = "i16",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(int16_t),
|
||
.is_quantized = false,
|
||
},
|
||
[GGML_TYPE_I32] = {
|
||
.type_name = "i32",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(int32_t),
|
||
.is_quantized = false,
|
||
},
|
||
[GGML_TYPE_I64] = {
|
||
.type_name = "i64",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(int64_t),
|
||
.is_quantized = false,
|
||
},
|
||
[GGML_TYPE_F64] = {
|
||
.type_name = "f64",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(double),
|
||
.is_quantized = false,
|
||
},
|
||
[GGML_TYPE_F32] = {
|
||
.type_name = "f32",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(float),
|
||
.is_quantized = false,
|
||
},
|
||
[GGML_TYPE_F16] = {
|
||
.type_name = "f16",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(ggml_fp16_t),
|
||
.is_quantized = false,
|
||
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
|
||
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
|
||
},
|
||
[GGML_TYPE_Q4_0] = {
|
||
.type_name = "q4_0",
|
||
.blck_size = QK4_0,
|
||
.type_size = sizeof(block_q4_0),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q4_0,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
|
||
},
|
||
[GGML_TYPE_Q4_1] = {
|
||
.type_name = "q4_1",
|
||
.blck_size = QK4_1,
|
||
.type_size = sizeof(block_q4_1),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q4_1,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
|
||
},
|
||
[4] = { // GGML_TYPE_Q4_2
|
||
.type_name = "DEPRECATED",
|
||
.blck_size = 0,
|
||
.type_size = 0,
|
||
.is_quantized = false,
|
||
},
|
||
[5] = { // GGML_TYPE_Q4_3
|
||
.type_name = "DEPRECATED",
|
||
.blck_size = 0,
|
||
.type_size = 0,
|
||
.is_quantized = false,
|
||
},
|
||
[GGML_TYPE_Q5_0] = {
|
||
.type_name = "q5_0",
|
||
.blck_size = QK5_0,
|
||
.type_size = sizeof(block_q5_0),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q5_0,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
|
||
},
|
||
[GGML_TYPE_Q5_1] = {
|
||
.type_name = "q5_1",
|
||
.blck_size = QK5_1,
|
||
.type_size = sizeof(block_q5_1),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q5_1,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
|
||
},
|
||
[GGML_TYPE_Q8_0] = {
|
||
.type_name = "q8_0",
|
||
.blck_size = QK8_0,
|
||
.type_size = sizeof(block_q8_0),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q8_0,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
|
||
},
|
||
[GGML_TYPE_Q8_1] = {
|
||
.type_name = "q8_1",
|
||
.blck_size = QK8_1,
|
||
.type_size = sizeof(block_q8_1),
|
||
.is_quantized = true,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
|
||
},
|
||
[GGML_TYPE_Q2_K] = {
|
||
.type_name = "q2_K",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_q2_K),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q2_K,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
|
||
},
|
||
[GGML_TYPE_Q3_K] = {
|
||
.type_name = "q3_K",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_q3_K),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q3_K,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
|
||
},
|
||
[GGML_TYPE_Q4_K] = {
|
||
.type_name = "q4_K",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_q4_K),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q4_K,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
|
||
},
|
||
[GGML_TYPE_Q5_K] = {
|
||
.type_name = "q5_K",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_q5_K),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q5_K,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
|
||
},
|
||
[GGML_TYPE_Q6_K] = {
|
||
.type_name = "q6_K",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_q6_K),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_q6_K,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
|
||
},
|
||
[GGML_TYPE_IQ2_XXS] = {
|
||
.type_name = "iq2_xxs",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq2_xxs),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
|
||
.from_float_ref = NULL,
|
||
},
|
||
[GGML_TYPE_IQ2_XS] = {
|
||
.type_name = "iq2_xs",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq2_xs),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
|
||
.from_float_ref = NULL,
|
||
},
|
||
[GGML_TYPE_IQ3_XXS] = {
|
||
.type_name = "iq3_xxs",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq3_xxs),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
|
||
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
|
||
},
|
||
[GGML_TYPE_IQ3_S] = {
|
||
.type_name = "iq3_s",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq3_s),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq3_s,
|
||
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
|
||
},
|
||
[GGML_TYPE_IQ2_S] = {
|
||
.type_name = "iq2_s",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq2_s),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq2_s,
|
||
.from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
|
||
},
|
||
[GGML_TYPE_IQ1_S] = {
|
||
.type_name = "iq1_s",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq1_s),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq1_s,
|
||
.from_float_ref = NULL,
|
||
},
|
||
[GGML_TYPE_IQ1_M] = {
|
||
.type_name = "iq1_m",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq1_m),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq1_m,
|
||
.from_float_ref = NULL,
|
||
},
|
||
[GGML_TYPE_IQ4_NL] = {
|
||
.type_name = "iq4_nl",
|
||
.blck_size = QK4_NL,
|
||
.type_size = sizeof(block_iq4_nl),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
|
||
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
|
||
},
|
||
[GGML_TYPE_IQ4_XS] = {
|
||
.type_name = "iq4_xs",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_iq4_xs),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
|
||
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
|
||
},
|
||
[GGML_TYPE_Q8_K] = {
|
||
.type_name = "q8_K",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_q8_K),
|
||
.is_quantized = true,
|
||
},
|
||
[GGML_TYPE_BF16] = {
|
||
.type_name = "bf16",
|
||
.blck_size = 1,
|
||
.type_size = sizeof(ggml_bf16_t),
|
||
.is_quantized = false,
|
||
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
|
||
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
|
||
},
|
||
[GGML_TYPE_Q4_0_4_4] = {
|
||
.type_name = "q4_0_4x4",
|
||
.blck_size = QK4_0,
|
||
.blck_size_interleave = 4,
|
||
.type_size = sizeof(block_q4_0),
|
||
.is_quantized = true,
|
||
.to_float = NULL,
|
||
.from_float_ref = NULL,
|
||
},
|
||
[GGML_TYPE_Q4_0_4_8] = {
|
||
.type_name = "q4_0_4x8",
|
||
.blck_size = QK4_0,
|
||
.blck_size_interleave = 8,
|
||
.type_size = sizeof(block_q4_0),
|
||
.is_quantized = true,
|
||
.to_float = NULL,
|
||
.from_float_ref = NULL,
|
||
},
|
||
[GGML_TYPE_Q4_0_8_8] = {
|
||
.type_name = "q4_0_8x8",
|
||
.blck_size = QK4_0,
|
||
.blck_size_interleave = 8,
|
||
.type_size = sizeof(block_q4_0),
|
||
.is_quantized = true,
|
||
.to_float = NULL,
|
||
.from_float_ref = NULL,
|
||
},
|
||
[GGML_TYPE_TQ1_0] = {
|
||
.type_name = "tq1_0",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_tq1_0),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_tq1_0,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
|
||
},
|
||
[GGML_TYPE_TQ2_0] = {
|
||
.type_name = "tq2_0",
|
||
.blck_size = QK_K,
|
||
.type_size = sizeof(block_tq2_0),
|
||
.is_quantized = true,
|
||
.to_float = (ggml_to_float_t) dequantize_row_tq2_0,
|
||
.from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
|
||
},
|
||
};
|
||
|
||
const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
|
||
GGML_ASSERT(type < GGML_TYPE_COUNT);
|
||
return &type_traits[type];
|
||
}
|
||
|
||
//
|
||
// ggml object
|
||
//
|
||
|
||
struct ggml_object {
|
||
size_t offs;
|
||
size_t size;
|
||
|
||
struct ggml_object * next;
|
||
|
||
enum ggml_object_type type;
|
||
|
||
char padding[4];
|
||
};
|
||
|
||
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
||
|
||
//
|
||
// ggml context
|
||
//
|
||
|
||
struct ggml_context {
|
||
size_t mem_size;
|
||
void * mem_buffer;
|
||
bool mem_buffer_owned;
|
||
bool no_alloc;
|
||
|
||
int n_objects;
|
||
|
||
struct ggml_object * objects_begin;
|
||
struct ggml_object * objects_end;
|
||
};
|
||
|
||
struct ggml_context_container {
|
||
bool used;
|
||
|
||
struct ggml_context context;
|
||
};
|
||
|
||
//
|
||
// data types
|
||
//
|
||
|
||
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||
"NONE",
|
||
|
||
"DUP",
|
||
"ADD",
|
||
"ADD1",
|
||
"ACC",
|
||
"SUB",
|
||
"MUL",
|
||
"DIV",
|
||
"SQR",
|
||
"SQRT",
|
||
"LOG",
|
||
"SIN",
|
||
"COS",
|
||
"SUM",
|
||
"SUM_ROWS",
|
||
"MEAN",
|
||
"ARGMAX",
|
||
"COUNT_EQUAL",
|
||
"REPEAT",
|
||
"REPEAT_BACK",
|
||
"CONCAT",
|
||
"SILU_BACK",
|
||
"NORM",
|
||
"RMS_NORM",
|
||
"RMS_NORM_BACK",
|
||
"GROUP_NORM",
|
||
|
||
"MUL_MAT",
|
||
"MUL_MAT_ID",
|
||
"OUT_PROD",
|
||
|
||
"SCALE",
|
||
"SET",
|
||
"CPY",
|
||
"CONT",
|
||
"RESHAPE",
|
||
"VIEW",
|
||
"PERMUTE",
|
||
"TRANSPOSE",
|
||
"GET_ROWS",
|
||
"GET_ROWS_BACK",
|
||
"DIAG",
|
||
"DIAG_MASK_INF",
|
||
"DIAG_MASK_ZERO",
|
||
"SOFT_MAX",
|
||
"SOFT_MAX_BACK",
|
||
"ROPE",
|
||
"ROPE_BACK",
|
||
"CLAMP",
|
||
"CONV_TRANSPOSE_1D",
|
||
"IM2COL",
|
||
"IM2COL_BACK",
|
||
"CONV_TRANSPOSE_2D",
|
||
"POOL_1D",
|
||
"POOL_2D",
|
||
"POOL_2D_BACK",
|
||
"UPSCALE",
|
||
"PAD",
|
||
"ARANGE",
|
||
"TIMESTEP_EMBEDDING",
|
||
"ARGSORT",
|
||
"LEAKY_RELU",
|
||
|
||
"FLASH_ATTN_EXT",
|
||
"FLASH_ATTN_BACK",
|
||
"SSM_CONV",
|
||
"SSM_SCAN",
|
||
"WIN_PART",
|
||
"WIN_UNPART",
|
||
"GET_REL_POS",
|
||
"ADD_REL_POS",
|
||
"RWKV_WKV6",
|
||
|
||
"UNARY",
|
||
|
||
"MAP_UNARY",
|
||
"MAP_BINARY",
|
||
|
||
"MAP_CUSTOM1_F32",
|
||
"MAP_CUSTOM2_F32",
|
||
"MAP_CUSTOM3_F32",
|
||
|
||
"MAP_CUSTOM1",
|
||
"MAP_CUSTOM2",
|
||
"MAP_CUSTOM3",
|
||
|
||
"CROSS_ENTROPY_LOSS",
|
||
"CROSS_ENTROPY_LOSS_BACK",
|
||
"OPT_STEP_ADAMW",
|
||
};
|
||
|
||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||
|
||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||
"none",
|
||
|
||
"x",
|
||
"x+y",
|
||
"x+y",
|
||
"view(x,nb,offset)+=y->x",
|
||
"x-y",
|
||
"x*y",
|
||
"x/y",
|
||
"x^2",
|
||
"√x",
|
||
"log(x)",
|
||
"sin(x)",
|
||
"cos(x)",
|
||
"Σx",
|
||
"Σx_k",
|
||
"Σx/n",
|
||
"argmax(x)",
|
||
"count_equal(x)",
|
||
"repeat(x)",
|
||
"repeat_back(x)",
|
||
"concat(x, y)",
|
||
"silu_back(x)",
|
||
"norm(x)",
|
||
"rms_norm(x)",
|
||
"rms_norm_back(x)",
|
||
"group_norm(x)",
|
||
|
||
"X*Y",
|
||
"X[i]*Y",
|
||
"X*Y",
|
||
|
||
"x*v",
|
||
"y-\\>view(x)",
|
||
"x-\\>y",
|
||
"cont(x)",
|
||
"reshape(x)",
|
||
"view(x)",
|
||
"permute(x)",
|
||
"transpose(x)",
|
||
"get_rows(x)",
|
||
"get_rows_back(x)",
|
||
"diag(x)",
|
||
"diag_mask_inf(x)",
|
||
"diag_mask_zero(x)",
|
||
"soft_max(x)",
|
||
"soft_max_back(x)",
|
||
"rope(x)",
|
||
"rope_back(x)",
|
||
"clamp(x)",
|
||
"conv_transpose_1d(x)",
|
||
"im2col(x)",
|
||
"im2col_back(x)",
|
||
"conv_transpose_2d(x)",
|
||
"pool_1d(x)",
|
||
"pool_2d(x)",
|
||
"pool_2d_back(x)",
|
||
"upscale(x)",
|
||
"pad(x)",
|
||
"arange(start, stop, step)",
|
||
"timestep_embedding(timesteps, dim, max_period)",
|
||
"argsort(x)",
|
||
"leaky_relu(x)",
|
||
|
||
"flash_attn_ext(x)",
|
||
"flash_attn_back(x)",
|
||
"ssm_conv(x)",
|
||
"ssm_scan(x)",
|
||
"win_part(x)",
|
||
"win_unpart(x)",
|
||
"get_rel_pos(x)",
|
||
"add_rel_pos(x)",
|
||
"rwkv_wkv6(k, v, r, tf, td, s)",
|
||
|
||
"unary(x)",
|
||
|
||
"f(x)",
|
||
"f(x,y)",
|
||
|
||
"custom_f32(x)",
|
||
"custom_f32(x,y)",
|
||
"custom_f32(x,y,z)",
|
||
|
||
"custom(x)",
|
||
"custom(x,y)",
|
||
"custom(x,y,z)",
|
||
|
||
"cross_entropy_loss(x,y)",
|
||
"cross_entropy_loss_back(x,y)",
|
||
"adamw(x)",
|
||
};
|
||
|
||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||
|
||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||
|
||
|
||
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
|
||
"ABS",
|
||
"SGN",
|
||
"NEG",
|
||
"STEP",
|
||
"TANH",
|
||
"ELU",
|
||
"RELU",
|
||
"SIGMOID",
|
||
"GELU",
|
||
"GELU_QUICK",
|
||
"SILU",
|
||
"HARDSWISH",
|
||
"HARDSIGMOID",
|
||
"EXP",
|
||
};
|
||
|
||
static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
|
||
|
||
|
||
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
||
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void ggml_print_object(const struct ggml_object * obj) {
|
||
GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
|
||
obj->type, obj->offs, obj->size, (const void *) obj->next);
|
||
}
|
||
|
||
void ggml_print_objects(const struct ggml_context * ctx) {
|
||
struct ggml_object * obj = ctx->objects_begin;
|
||
|
||
GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
|
||
|
||
while (obj != NULL) {
|
||
ggml_print_object(obj);
|
||
obj = obj->next;
|
||
}
|
||
|
||
GGML_LOG_INFO("%s: --- end ---\n", __func__);
|
||
}
|
||
|
||
int64_t ggml_nelements(const struct ggml_tensor * tensor) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
|
||
}
|
||
|
||
int64_t ggml_nrows(const struct ggml_tensor * tensor) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
|
||
}
|
||
|
||
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||
size_t nbytes;
|
||
const size_t blck_size = ggml_blck_size(tensor->type);
|
||
if (blck_size == 1) {
|
||
nbytes = ggml_type_size(tensor->type);
|
||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
|
||
}
|
||
}
|
||
else {
|
||
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
|
||
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
|
||
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
|
||
}
|
||
}
|
||
|
||
return nbytes;
|
||
}
|
||
|
||
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
|
||
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
|
||
}
|
||
|
||
int64_t ggml_blck_size(enum ggml_type type) {
|
||
return type_traits[type].blck_size;
|
||
}
|
||
|
||
size_t ggml_type_size(enum ggml_type type) {
|
||
return type_traits[type].type_size;
|
||
}
|
||
|
||
size_t ggml_row_size(enum ggml_type type, int64_t ne) {
|
||
assert(ne % ggml_blck_size(type) == 0);
|
||
return ggml_type_size(type)*ne/ggml_blck_size(type);
|
||
}
|
||
|
||
double ggml_type_sizef(enum ggml_type type) {
|
||
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
|
||
}
|
||
|
||
const char * ggml_type_name(enum ggml_type type) {
|
||
return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
|
||
}
|
||
|
||
bool ggml_is_quantized(enum ggml_type type) {
|
||
return type_traits[type].is_quantized;
|
||
}
|
||
|
||
const char * ggml_op_name(enum ggml_op op) {
|
||
return GGML_OP_NAME[op];
|
||
}
|
||
|
||
const char * ggml_op_symbol(enum ggml_op op) {
|
||
return GGML_OP_SYMBOL[op];
|
||
}
|
||
|
||
const char * ggml_unary_op_name(enum ggml_unary_op op) {
|
||
return GGML_UNARY_OP_NAME[op];
|
||
}
|
||
|
||
const char * ggml_op_desc(const struct ggml_tensor * t) {
|
||
if (t->op == GGML_OP_UNARY) {
|
||
enum ggml_unary_op uop = ggml_get_unary_op(t);
|
||
return ggml_unary_op_name(uop);
|
||
}
|
||
return ggml_op_name(t->op);
|
||
}
|
||
|
||
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
||
return ggml_type_size(tensor->type);
|
||
}
|
||
|
||
bool ggml_is_scalar(const struct ggml_tensor * tensor) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
|
||
}
|
||
|
||
bool ggml_is_vector(const struct ggml_tensor * tensor) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
|
||
}
|
||
|
||
bool ggml_is_matrix(const struct ggml_tensor * tensor) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return tensor->ne[2] == 1 && tensor->ne[3] == 1;
|
||
}
|
||
|
||
bool ggml_is_3d(const struct ggml_tensor * tensor) {
|
||
return tensor->ne[3] == 1;
|
||
}
|
||
|
||
int ggml_n_dims(const struct ggml_tensor * tensor) {
|
||
for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
|
||
if (tensor->ne[i] > 1) {
|
||
return i + 1;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
||
enum ggml_type wtype = GGML_TYPE_COUNT;
|
||
|
||
switch (ftype) {
|
||
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
|
||
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
|
||
case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
|
||
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
|
||
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
|
||
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
|
||
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
|
||
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
|
||
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
|
||
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
|
||
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
|
||
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
|
||
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
|
||
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
|
||
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
|
||
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
||
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
|
||
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
|
||
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
|
||
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
|
||
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
|
||
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
|
||
case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
|
||
case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
|
||
case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
|
||
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
||
}
|
||
|
||
GGML_ASSERT(wtype != GGML_TYPE_COUNT);
|
||
|
||
return wtype;
|
||
}
|
||
|
||
size_t ggml_tensor_overhead(void) {
|
||
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
|
||
}
|
||
|
||
bool ggml_is_transposed(const struct ggml_tensor * tensor) {
|
||
return tensor->nb[0] > tensor->nb[1];
|
||
}
|
||
|
||
static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
|
||
size_t next_nb = ggml_type_size(tensor->type);
|
||
if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
|
||
return false;
|
||
}
|
||
next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
|
||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||
if (tensor->ne[i] != 1) {
|
||
if (i > n) {
|
||
if (tensor->nb[i] != next_nb) {
|
||
return false;
|
||
}
|
||
next_nb *= tensor->ne[i];
|
||
} else {
|
||
// this dimension does not need to be contiguous
|
||
next_nb = tensor->ne[i]*tensor->nb[i];
|
||
}
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
|
||
return ggml_is_contiguous_0(tensor);
|
||
}
|
||
|
||
bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
|
||
return ggml_is_contiguous_n(tensor, 0);
|
||
}
|
||
|
||
bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
|
||
return ggml_is_contiguous_n(tensor, 1);
|
||
}
|
||
|
||
bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
|
||
return ggml_is_contiguous_n(tensor, 2);
|
||
}
|
||
|
||
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
|
||
}
|
||
|
||
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return
|
||
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
||
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||
}
|
||
|
||
bool ggml_is_empty(const struct ggml_tensor * tensor) {
|
||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||
if (tensor->ne[i] == 0) {
|
||
// empty if any dimension has no elements
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return
|
||
(t0->ne[0] == t1->ne[0]) &&
|
||
(t0->ne[1] == t1->ne[1]) &&
|
||
(t0->ne[2] == t1->ne[2]) &&
|
||
(t0->ne[3] == t1->ne[3]);
|
||
}
|
||
|
||
bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return
|
||
(t0->nb[0] == t1->nb[0]) &&
|
||
(t0->nb[1] == t1->nb[1]) &&
|
||
(t0->nb[2] == t1->nb[2]) &&
|
||
(t0->nb[3] == t1->nb[3]);
|
||
}
|
||
|
||
// check if t1 can be represented as a repeatition of t0
|
||
bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return ggml_is_empty(t0) ? ggml_is_empty(t1) :
|
||
(t1->ne[0]%t0->ne[0] == 0) &&
|
||
(t1->ne[1]%t0->ne[1] == 0) &&
|
||
(t1->ne[2]%t0->ne[2] == 0) &&
|
||
(t1->ne[3]%t0->ne[3] == 0);
|
||
}
|
||
|
||
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
|
||
}
|
||
|
||
// assert that pointer is aligned to GGML_MEM_ALIGN
|
||
#define GGML_ASSERT_ALIGNED(ptr) \
|
||
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
struct ggml_context * ggml_init(struct ggml_init_params params) {
|
||
static bool is_first_call = true;
|
||
|
||
ggml_critical_section_start();
|
||
|
||
if (is_first_call) {
|
||
// initialize time system (required on Windows)
|
||
ggml_time_init();
|
||
|
||
for (int i = 0; i < (1 << 16); ++i) {
|
||
union {
|
||
uint16_t u16;
|
||
ggml_fp16_t fp16;
|
||
} u = {i};
|
||
ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
|
||
}
|
||
|
||
is_first_call = false;
|
||
}
|
||
|
||
ggml_critical_section_end();
|
||
|
||
struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context));
|
||
|
||
// allow to call ggml_init with 0 size
|
||
if (params.mem_size == 0) {
|
||
params.mem_size = GGML_MEM_ALIGN;
|
||
}
|
||
|
||
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
|
||
|
||
*ctx = (struct ggml_context) {
|
||
/*.mem_size =*/ mem_size,
|
||
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size),
|
||
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
|
||
/*.no_alloc =*/ params.no_alloc,
|
||
/*.n_objects =*/ 0,
|
||
/*.objects_begin =*/ NULL,
|
||
/*.objects_end =*/ NULL,
|
||
};
|
||
|
||
GGML_ASSERT(ctx->mem_buffer != NULL);
|
||
|
||
GGML_ASSERT_ALIGNED(ctx->mem_buffer);
|
||
|
||
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
|
||
|
||
return ctx;
|
||
}
|
||
|
||
void ggml_reset(struct ggml_context * ctx) {
|
||
if (ctx == NULL) {
|
||
return;
|
||
}
|
||
|
||
ctx->n_objects = 0;
|
||
ctx->objects_begin = NULL;
|
||
ctx->objects_end = NULL;
|
||
}
|
||
|
||
void ggml_free(struct ggml_context * ctx) {
|
||
if (ctx == NULL) {
|
||
return;
|
||
}
|
||
|
||
if (ctx->mem_buffer_owned) {
|
||
ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
|
||
}
|
||
|
||
GGML_FREE(ctx);
|
||
}
|
||
|
||
size_t ggml_used_mem(const struct ggml_context * ctx) {
|
||
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
|
||
}
|
||
|
||
bool ggml_get_no_alloc(struct ggml_context * ctx) {
|
||
return ctx->no_alloc;
|
||
}
|
||
|
||
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
|
||
ctx->no_alloc = no_alloc;
|
||
}
|
||
|
||
void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
|
||
return ctx->mem_buffer;
|
||
}
|
||
|
||
size_t ggml_get_mem_size(const struct ggml_context * ctx) {
|
||
return ctx->mem_size;
|
||
}
|
||
|
||
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
|
||
size_t max_size = 0;
|
||
|
||
for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
|
||
size_t bytes = ggml_nbytes(tensor);
|
||
max_size = MAX(max_size, bytes);
|
||
}
|
||
|
||
return max_size;
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
|
||
// always insert objects at the end of the context's memory pool
|
||
struct ggml_object * obj_cur = ctx->objects_end;
|
||
|
||
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
|
||
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
|
||
const size_t cur_end = cur_offs + cur_size;
|
||
|
||
// align to GGML_MEM_ALIGN
|
||
size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
|
||
|
||
char * const mem_buffer = ctx->mem_buffer;
|
||
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
|
||
|
||
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
|
||
GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
|
||
__func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
|
||
#ifndef NDEBUG
|
||
GGML_ABORT("not enough space in the context's memory pool");
|
||
#endif
|
||
return NULL;
|
||
}
|
||
|
||
*obj_new = (struct ggml_object) {
|
||
.offs = cur_end + GGML_OBJECT_SIZE,
|
||
.size = size_needed,
|
||
.next = NULL,
|
||
.type = type,
|
||
};
|
||
|
||
GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
|
||
|
||
if (obj_cur != NULL) {
|
||
obj_cur->next = obj_new;
|
||
} else {
|
||
// this is the first object in this context
|
||
ctx->objects_begin = obj_new;
|
||
}
|
||
|
||
ctx->objects_end = obj_new;
|
||
|
||
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
|
||
|
||
return obj_new;
|
||
}
|
||
|
||
static struct ggml_tensor * ggml_new_tensor_impl(
|
||
struct ggml_context * ctx,
|
||
enum ggml_type type,
|
||
int n_dims,
|
||
const int64_t * ne,
|
||
struct ggml_tensor * view_src,
|
||
size_t view_offs) {
|
||
|
||
GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
|
||
GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
|
||
|
||
// find the base tensor and absolute offset
|
||
if (view_src != NULL && view_src->view_src != NULL) {
|
||
view_offs += view_src->view_offs;
|
||
view_src = view_src->view_src;
|
||
}
|
||
|
||
size_t data_size = ggml_row_size(type, ne[0]);
|
||
for (int i = 1; i < n_dims; i++) {
|
||
data_size *= ne[i];
|
||
}
|
||
|
||
GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
|
||
|
||
void * data = view_src != NULL ? view_src->data : NULL;
|
||
if (data != NULL) {
|
||
data = (char *) data + view_offs;
|
||
}
|
||
|
||
size_t obj_alloc_size = 0;
|
||
|
||
if (view_src == NULL && !ctx->no_alloc) {
|
||
// allocate tensor data in the context's memory pool
|
||
obj_alloc_size = data_size;
|
||
}
|
||
|
||
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
|
||
GGML_ASSERT(obj_new);
|
||
|
||
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
|
||
|
||
#ifdef __clang__
|
||
// temporary until ggml_tensor::backend is removed
|
||
#pragma clang diagnostic push
|
||
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||
#endif
|
||
|
||
*result = (struct ggml_tensor) {
|
||
/*.type =*/ type,
|
||
/*.backend =*/ GGML_BACKEND_TYPE_CPU,
|
||
/*.buffer =*/ NULL,
|
||
/*.ne =*/ { 1, 1, 1, 1 },
|
||
/*.nb =*/ { 0, 0, 0, 0 },
|
||
/*.op =*/ GGML_OP_NONE,
|
||
/*.op_params =*/ { 0 },
|
||
/*.flags =*/ 0,
|
||
/*.grad =*/ NULL,
|
||
/*.src =*/ { NULL },
|
||
/*.view_src =*/ view_src,
|
||
/*.view_offs =*/ view_offs,
|
||
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
|
||
/*.name =*/ { 0 },
|
||
/*.extra =*/ NULL,
|
||
///*.padding =*/ { 0 },
|
||
};
|
||
|
||
#ifdef __clang__
|
||
#pragma clang diagnostic pop
|
||
#endif
|
||
|
||
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
|
||
//GGML_ASSERT_ALIGNED(result->data);
|
||
|
||
for (int i = 0; i < n_dims; i++) {
|
||
result->ne[i] = ne[i];
|
||
}
|
||
|
||
result->nb[0] = ggml_type_size(type);
|
||
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
|
||
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
||
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
|
||
}
|
||
|
||
ctx->n_objects++;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_new_tensor(
|
||
struct ggml_context * ctx,
|
||
enum ggml_type type,
|
||
int n_dims,
|
||
const int64_t * ne) {
|
||
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_new_tensor_1d(
|
||
struct ggml_context * ctx,
|
||
enum ggml_type type,
|
||
int64_t ne0) {
|
||
return ggml_new_tensor(ctx, type, 1, &ne0);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_new_tensor_2d(
|
||
struct ggml_context * ctx,
|
||
enum ggml_type type,
|
||
int64_t ne0,
|
||
int64_t ne1) {
|
||
const int64_t ne[2] = { ne0, ne1 };
|
||
return ggml_new_tensor(ctx, type, 2, ne);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_new_tensor_3d(
|
||
struct ggml_context * ctx,
|
||
enum ggml_type type,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2) {
|
||
const int64_t ne[3] = { ne0, ne1, ne2 };
|
||
return ggml_new_tensor(ctx, type, 3, ne);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_new_tensor_4d(
|
||
struct ggml_context * ctx,
|
||
enum ggml_type type,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2,
|
||
int64_t ne3) {
|
||
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
||
return ggml_new_tensor(ctx, type, 4, ne);
|
||
}
|
||
|
||
void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes) {
|
||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, nbytes);
|
||
|
||
return (uint8_t *)ctx->mem_buffer + obj->offs;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
|
||
return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
|
||
}
|
||
|
||
void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
|
||
const int64_t ne2 = tensor->ne[2];
|
||
const int64_t ne1 = tensor->ne[1];
|
||
const int64_t ne0 = tensor->ne[0];
|
||
|
||
const int64_t i3_ = (i/(ne2*ne1*ne0));
|
||
const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
|
||
const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
|
||
const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
|
||
|
||
if (i0) {
|
||
* i0 = i0_;
|
||
}
|
||
if (i1) {
|
||
* i1 = i1_;
|
||
}
|
||
if (i2) {
|
||
* i2 = i2_;
|
||
}
|
||
if (i3) {
|
||
* i3 = i3_;
|
||
}
|
||
}
|
||
|
||
void * ggml_get_data(const struct ggml_tensor * tensor) {
|
||
return tensor->data;
|
||
}
|
||
|
||
float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
|
||
assert(tensor->type == GGML_TYPE_F32);
|
||
return (float *)(tensor->data);
|
||
}
|
||
|
||
enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
|
||
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
|
||
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
|
||
}
|
||
|
||
const char * ggml_get_name(const struct ggml_tensor * tensor) {
|
||
return tensor->name;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
|
||
size_t i;
|
||
for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
|
||
tensor->name[i] = name[i];
|
||
}
|
||
tensor->name[i] = '\0';
|
||
return tensor;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
|
||
va_list args;
|
||
va_start(args, fmt);
|
||
vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
|
||
va_end(args);
|
||
return tensor;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_view_tensor(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * src) {
|
||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
|
||
ggml_format_name(result, "%s (view)", src->name);
|
||
|
||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||
result->nb[i] = src->nb[i];
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
|
||
struct ggml_object * obj = ctx->objects_begin;
|
||
|
||
char * const mem_buffer = ctx->mem_buffer;
|
||
|
||
while (obj != NULL) {
|
||
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
|
||
return (struct ggml_tensor *)(mem_buffer + obj->offs);
|
||
}
|
||
|
||
obj = obj->next;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
|
||
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
|
||
obj = obj->next;
|
||
|
||
char * const mem_buffer = ctx->mem_buffer;
|
||
|
||
while (obj != NULL) {
|
||
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
|
||
return (struct ggml_tensor *)(mem_buffer + obj->offs);
|
||
}
|
||
|
||
obj = obj->next;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
|
||
struct ggml_object * obj = ctx->objects_begin;
|
||
|
||
char * const mem_buffer = ctx->mem_buffer;
|
||
|
||
while (obj != NULL) {
|
||
if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
|
||
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
|
||
if (strcmp(cur->name, name) == 0) {
|
||
return cur;
|
||
}
|
||
}
|
||
|
||
obj = obj->next;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// ggml_dup
|
||
|
||
static struct ggml_tensor * ggml_dup_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_DUP;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_dup(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_dup_impl(ctx, a, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_dup_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_dup_impl(ctx, a, true);
|
||
}
|
||
|
||
// ggml_add
|
||
|
||
static struct ggml_tensor * ggml_add_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_ADD;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_add(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_add_impl(ctx, a, b, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_add_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_add_impl(ctx, a, b, true);
|
||
}
|
||
|
||
// ggml_add_cast
|
||
|
||
static struct ggml_tensor * ggml_add_cast_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
enum ggml_type type) {
|
||
// TODO: support less-strict constraint
|
||
// GGML_ASSERT(ggml_can_repeat(b, a));
|
||
GGML_ASSERT(ggml_can_repeat_rows(b, a));
|
||
|
||
// currently only supported for quantized input and f16
|
||
GGML_ASSERT(ggml_is_quantized(a->type) ||
|
||
a->type == GGML_TYPE_F16 ||
|
||
a->type == GGML_TYPE_BF16);
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
|
||
|
||
result->op = GGML_OP_ADD;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_add_cast(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
enum ggml_type type) {
|
||
return ggml_add_cast_impl(ctx, a, b, type);
|
||
}
|
||
|
||
// ggml_add1
|
||
|
||
static struct ggml_tensor * ggml_add1_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_is_scalar(b));
|
||
GGML_ASSERT(ggml_is_padded_1d(a));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_ADD1;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_add1(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_add1_impl(ctx, a, b, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_add1_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_add1_impl(ctx, a, b, true);
|
||
}
|
||
|
||
// ggml_acc
|
||
|
||
static struct ggml_tensor * ggml_acc_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t nb3,
|
||
size_t offset,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
GGML_ASSERT(a->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(b->type == GGML_TYPE_F32);
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_ACC;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_acc(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t nb3,
|
||
size_t offset) {
|
||
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_acc_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t nb3,
|
||
size_t offset) {
|
||
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
|
||
}
|
||
|
||
// ggml_sub
|
||
|
||
static struct ggml_tensor * ggml_sub_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_SUB;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sub(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_sub_impl(ctx, a, b, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sub_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_sub_impl(ctx, a, b, true);
|
||
}
|
||
|
||
// ggml_mul
|
||
|
||
static struct ggml_tensor * ggml_mul_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_MUL;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_mul(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_mul_impl(ctx, a, b, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_mul_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_mul_impl(ctx, a, b, true);
|
||
}
|
||
|
||
// ggml_div
|
||
|
||
static struct ggml_tensor * ggml_div_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_DIV;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_div(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_div_impl(ctx, a, b, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_div_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_div_impl(ctx, a, b, true);
|
||
}
|
||
|
||
// ggml_sqr
|
||
|
||
static struct ggml_tensor * ggml_sqr_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_SQR;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sqr(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_sqr_impl(ctx, a, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sqr_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_sqr_impl(ctx, a, true);
|
||
}
|
||
|
||
// ggml_sqrt
|
||
|
||
static struct ggml_tensor * ggml_sqrt_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_SQRT;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sqrt(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_sqrt_impl(ctx, a, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sqrt_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_sqrt_impl(ctx, a, true);
|
||
}
|
||
|
||
// ggml_log
|
||
|
||
static struct ggml_tensor * ggml_log_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_LOG;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_log(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_log_impl(ctx, a, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_log_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_log_impl(ctx, a, true);
|
||
}
|
||
|
||
// ggml_sin
|
||
|
||
static struct ggml_tensor * ggml_sin_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_SIN;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sin(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_sin_impl(ctx, a, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sin_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_sin_impl(ctx, a, true);
|
||
}
|
||
|
||
// ggml_cos
|
||
|
||
static struct ggml_tensor * ggml_cos_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_COS;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_cos(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_cos_impl(ctx, a, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_cos_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_cos_impl(ctx, a, true);
|
||
}
|
||
|
||
// ggml_sum
|
||
|
||
struct ggml_tensor * ggml_sum(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
|
||
|
||
result->op = GGML_OP_SUM;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_sum_rows
|
||
|
||
struct ggml_tensor * ggml_sum_rows(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
int64_t ne[GGML_MAX_DIMS] = { 1 };
|
||
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
|
||
ne[i] = a->ne[i];
|
||
}
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
|
||
|
||
result->op = GGML_OP_SUM_ROWS;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_mean
|
||
|
||
struct ggml_tensor * ggml_mean(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
result->op = GGML_OP_MEAN;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_argmax
|
||
|
||
struct ggml_tensor * ggml_argmax(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
GGML_ASSERT(ggml_is_matrix(a));
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
|
||
|
||
result->op = GGML_OP_ARGMAX;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_count_equal
|
||
|
||
struct ggml_tensor * ggml_count_equal(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_are_same_shape(a, b));
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
|
||
|
||
result->op = GGML_OP_COUNT_EQUAL;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_repeat
|
||
|
||
struct ggml_tensor * ggml_repeat(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_can_repeat(a, b));
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
|
||
|
||
result->op = GGML_OP_REPEAT;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_repeat_back
|
||
|
||
struct ggml_tensor * ggml_repeat_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_can_repeat(b, a));
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
|
||
|
||
result->op = GGML_OP_REPEAT_BACK;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_concat
|
||
|
||
struct ggml_tensor * ggml_concat(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int dim) {
|
||
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
|
||
|
||
int64_t ne[GGML_MAX_DIMS];
|
||
for (int d = 0; d < GGML_MAX_DIMS; ++d) {
|
||
if (d == dim) {
|
||
ne[d] = a->ne[d] + b->ne[d];
|
||
continue;
|
||
}
|
||
GGML_ASSERT(a->ne[d] == b->ne[d]);
|
||
ne[d] = a->ne[d];
|
||
}
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
|
||
|
||
ggml_set_op_params_i32(result, 0, dim);
|
||
|
||
result->op = GGML_OP_CONCAT;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_abs
|
||
|
||
struct ggml_tensor * ggml_abs(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_abs_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
|
||
}
|
||
|
||
// ggml_sgn
|
||
|
||
struct ggml_tensor * ggml_sgn(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sgn_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
|
||
}
|
||
|
||
// ggml_neg
|
||
|
||
struct ggml_tensor * ggml_neg(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_neg_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
|
||
}
|
||
|
||
// ggml_step
|
||
|
||
struct ggml_tensor * ggml_step(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_step_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
|
||
}
|
||
|
||
// ggml_tanh
|
||
|
||
struct ggml_tensor * ggml_tanh(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_tanh_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
|
||
}
|
||
|
||
// ggml_elu
|
||
|
||
struct ggml_tensor * ggml_elu(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_elu_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
|
||
}
|
||
|
||
// ggml_relu
|
||
|
||
struct ggml_tensor * ggml_relu(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_relu_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
|
||
}
|
||
|
||
// ggml_leaky_relu
|
||
|
||
struct ggml_tensor * ggml_leaky_relu(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float negative_slope,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
|
||
|
||
result->op = GGML_OP_LEAKY_RELU;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_sigmoid
|
||
|
||
struct ggml_tensor * ggml_sigmoid(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_sigmoid_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
|
||
}
|
||
|
||
// ggml_gelu
|
||
|
||
struct ggml_tensor * ggml_gelu(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_gelu_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
|
||
}
|
||
|
||
// ggml_gelu_quick
|
||
|
||
struct ggml_tensor * ggml_gelu_quick(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_gelu_quick_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
|
||
}
|
||
|
||
// ggml_silu
|
||
|
||
struct ggml_tensor * ggml_silu(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_silu_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
|
||
}
|
||
|
||
// ggml_silu_back
|
||
|
||
struct ggml_tensor * ggml_silu_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_SILU_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml hardswish
|
||
|
||
struct ggml_tensor * ggml_hardswish(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
|
||
}
|
||
|
||
// ggml hardsigmoid
|
||
|
||
struct ggml_tensor * ggml_hardsigmoid(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
|
||
}
|
||
|
||
// ggml exp
|
||
|
||
struct ggml_tensor * ggml_exp(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_exp_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
|
||
}
|
||
|
||
// ggml_norm
|
||
|
||
static struct ggml_tensor * ggml_norm_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float eps,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, &eps, sizeof(eps));
|
||
|
||
result->op = GGML_OP_NORM;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_norm(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float eps) {
|
||
return ggml_norm_impl(ctx, a, eps, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_norm_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float eps) {
|
||
return ggml_norm_impl(ctx, a, eps, true);
|
||
}
|
||
|
||
// ggml_rms_norm
|
||
|
||
static struct ggml_tensor * ggml_rms_norm_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float eps,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, &eps, sizeof(eps));
|
||
|
||
result->op = GGML_OP_RMS_NORM;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rms_norm(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float eps) {
|
||
return ggml_rms_norm_impl(ctx, a, eps, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rms_norm_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float eps) {
|
||
return ggml_rms_norm_impl(ctx, a, eps, true);
|
||
}
|
||
|
||
// ggml_rms_norm_back
|
||
|
||
struct ggml_tensor * ggml_rms_norm_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
float eps) {
|
||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, &eps, sizeof(eps));
|
||
|
||
result->op = GGML_OP_RMS_NORM_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_group_norm
|
||
|
||
static struct ggml_tensor * ggml_group_norm_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_groups,
|
||
float eps,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params_i32(result, 0, n_groups);
|
||
ggml_set_op_params_f32(result, 1, eps);
|
||
|
||
result->op = GGML_OP_GROUP_NORM;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_group_norm(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_groups,
|
||
float eps) {
|
||
return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_group_norm_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_groups,
|
||
float eps) {
|
||
return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
|
||
}
|
||
|
||
// ggml_mul_mat
|
||
|
||
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return (t0->ne[0] == t1->ne[0]) &&
|
||
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
|
||
(t1->ne[3]%t0->ne[3] == 0);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_mul_mat(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
||
GGML_ASSERT(!ggml_is_transposed(a));
|
||
|
||
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
result->op = GGML_OP_MUL_MAT;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
void ggml_mul_mat_set_prec(
|
||
struct ggml_tensor * a,
|
||
enum ggml_prec prec) {
|
||
GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
|
||
|
||
const int32_t prec_i32 = (int32_t) prec;
|
||
|
||
ggml_set_op_params_i32(a, 0, prec_i32);
|
||
}
|
||
|
||
// ggml_mul_mat_id
|
||
|
||
/*
|
||
c = ggml_mul_mat_id(ctx, as, b, ids);
|
||
|
||
as -> [cols, rows, n_expert]
|
||
ids -> [n_experts_used, n_tokens] (i32)
|
||
b -> [cols, n_expert_used, n_tokens]
|
||
c -> [rows, n_expert_used, n_tokens]
|
||
|
||
in b, n_experts_used can be broadcasted to match the n_expert_used of ids
|
||
|
||
c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
|
||
*/
|
||
struct ggml_tensor * ggml_mul_mat_id(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * as,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * ids) {
|
||
GGML_ASSERT(!ggml_is_transposed(as));
|
||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||
|
||
GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
|
||
GGML_ASSERT(b->ne[3] == 1); // b is 3d
|
||
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
|
||
GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
|
||
GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
|
||
GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
|
||
|
||
const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
result->op = GGML_OP_MUL_MAT_ID;
|
||
result->src[0] = as;
|
||
result->src[1] = b;
|
||
result->src[2] = ids;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_out_prod
|
||
|
||
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return (t0->ne[1] == t1->ne[1]) &&
|
||
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
|
||
(t1->ne[3]%t0->ne[3] == 0);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_out_prod(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_can_out_prod(a, b));
|
||
GGML_ASSERT(!ggml_is_transposed(a));
|
||
|
||
// a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
|
||
const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
result->op = GGML_OP_OUT_PROD;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_scale
|
||
|
||
static struct ggml_tensor * ggml_scale_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float s,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_is_padded_1d(a));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, &s, sizeof(s));
|
||
|
||
result->op = GGML_OP_SCALE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_scale(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float s) {
|
||
return ggml_scale_impl(ctx, a, s, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_scale_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float s) {
|
||
return ggml_scale_impl(ctx, a, s, true);
|
||
}
|
||
|
||
// ggml_set
|
||
|
||
static struct ggml_tensor * ggml_set_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t nb3,
|
||
size_t offset,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
|
||
|
||
// make a view of the destination
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
GGML_ASSERT(offset < (size_t)(1 << 30));
|
||
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_SET;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t nb3,
|
||
size_t offset) {
|
||
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t nb3,
|
||
size_t offset) {
|
||
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set_1d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t offset) {
|
||
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set_1d_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t offset) {
|
||
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set_2d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t offset) {
|
||
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set_2d_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
size_t nb1,
|
||
size_t offset) {
|
||
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
|
||
}
|
||
|
||
// ggml_cpy
|
||
|
||
static struct ggml_tensor * ggml_cpy_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
||
|
||
// make a view of the destination
|
||
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
|
||
if (strlen(b->name) > 0) {
|
||
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
|
||
} else {
|
||
ggml_format_name(result, "%s (copy)", a->name);
|
||
}
|
||
|
||
result->op = GGML_OP_CPY;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_cpy(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_cpy_impl(ctx, a, b);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_cast(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
enum ggml_type type) {
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
|
||
ggml_format_name(result, "%s (copy)", a->name);
|
||
|
||
result->op = GGML_OP_CPY;
|
||
result->src[0] = a;
|
||
result->src[1] = result;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_cont
|
||
|
||
static struct ggml_tensor * ggml_cont_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||
ggml_format_name(result, "%s (cont)", a->name);
|
||
|
||
result->op = GGML_OP_CONT;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_cont(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_cont_impl(ctx, a);
|
||
}
|
||
|
||
// make contiguous, with new shape
|
||
GGML_API struct ggml_tensor * ggml_cont_1d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0) {
|
||
return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
|
||
}
|
||
|
||
GGML_API struct ggml_tensor * ggml_cont_2d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1) {
|
||
return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
|
||
}
|
||
|
||
GGML_API struct ggml_tensor * ggml_cont_3d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2) {
|
||
return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_cont_4d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2,
|
||
int64_t ne3) {
|
||
GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
|
||
ggml_format_name(result, "%s (cont)", a->name);
|
||
|
||
result->op = GGML_OP_CONT;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_reshape
|
||
|
||
struct ggml_tensor * ggml_reshape(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
// as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
|
||
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
|
||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||
|
||
result->op = GGML_OP_RESHAPE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_reshape_1d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0) {
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
GGML_ASSERT(ggml_nelements(a) == ne0);
|
||
|
||
const int64_t ne[1] = { ne0 };
|
||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
|
||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||
|
||
result->op = GGML_OP_RESHAPE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_reshape_2d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1) {
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
|
||
|
||
const int64_t ne[2] = { ne0, ne1 };
|
||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
|
||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||
|
||
result->op = GGML_OP_RESHAPE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_reshape_3d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2) {
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
|
||
|
||
const int64_t ne[3] = { ne0, ne1, ne2 };
|
||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
|
||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||
|
||
result->op = GGML_OP_RESHAPE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_reshape_4d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2,
|
||
int64_t ne3) {
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
|
||
|
||
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
|
||
ggml_format_name(result, "%s (reshaped)", a->name);
|
||
|
||
result->op = GGML_OP_RESHAPE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
static struct ggml_tensor * ggml_view_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_dims,
|
||
const int64_t * ne,
|
||
size_t offset) {
|
||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
|
||
ggml_format_name(result, "%s (view)", a->name);
|
||
|
||
ggml_set_op_params(result, &offset, sizeof(offset));
|
||
|
||
result->op = GGML_OP_VIEW;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_view_1d
|
||
|
||
struct ggml_tensor * ggml_view_1d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
size_t offset) {
|
||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_view_2d
|
||
|
||
struct ggml_tensor * ggml_view_2d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
size_t nb1,
|
||
size_t offset) {
|
||
const int64_t ne[2] = { ne0, ne1 };
|
||
|
||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
|
||
|
||
result->nb[1] = nb1;
|
||
result->nb[2] = result->nb[1]*ne1;
|
||
result->nb[3] = result->nb[2];
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_view_3d
|
||
|
||
struct ggml_tensor * ggml_view_3d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t offset) {
|
||
const int64_t ne[3] = { ne0, ne1, ne2 };
|
||
|
||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
|
||
|
||
result->nb[1] = nb1;
|
||
result->nb[2] = nb2;
|
||
result->nb[3] = result->nb[2]*ne2;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_view_4d
|
||
|
||
struct ggml_tensor * ggml_view_4d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int64_t ne0,
|
||
int64_t ne1,
|
||
int64_t ne2,
|
||
int64_t ne3,
|
||
size_t nb1,
|
||
size_t nb2,
|
||
size_t nb3,
|
||
size_t offset) {
|
||
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
||
|
||
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
|
||
|
||
result->nb[1] = nb1;
|
||
result->nb[2] = nb2;
|
||
result->nb[3] = nb3;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_permute
|
||
|
||
struct ggml_tensor * ggml_permute(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int axis0,
|
||
int axis1,
|
||
int axis2,
|
||
int axis3) {
|
||
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
|
||
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
|
||
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
|
||
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
|
||
|
||
GGML_ASSERT(axis0 != axis1);
|
||
GGML_ASSERT(axis0 != axis2);
|
||
GGML_ASSERT(axis0 != axis3);
|
||
GGML_ASSERT(axis1 != axis2);
|
||
GGML_ASSERT(axis1 != axis3);
|
||
GGML_ASSERT(axis2 != axis3);
|
||
|
||
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
||
ggml_format_name(result, "%s (permuted)", a->name);
|
||
|
||
int ne[GGML_MAX_DIMS];
|
||
int nb[GGML_MAX_DIMS];
|
||
|
||
ne[axis0] = a->ne[0];
|
||
ne[axis1] = a->ne[1];
|
||
ne[axis2] = a->ne[2];
|
||
ne[axis3] = a->ne[3];
|
||
|
||
nb[axis0] = a->nb[0];
|
||
nb[axis1] = a->nb[1];
|
||
nb[axis2] = a->nb[2];
|
||
nb[axis3] = a->nb[3];
|
||
|
||
result->ne[0] = ne[0];
|
||
result->ne[1] = ne[1];
|
||
result->ne[2] = ne[2];
|
||
result->ne[3] = ne[3];
|
||
|
||
result->nb[0] = nb[0];
|
||
result->nb[1] = nb[1];
|
||
result->nb[2] = nb[2];
|
||
result->nb[3] = nb[3];
|
||
|
||
result->op = GGML_OP_PERMUTE;
|
||
result->src[0] = a;
|
||
|
||
int32_t params[] = { axis0, axis1, axis2, axis3 };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_transpose
|
||
|
||
struct ggml_tensor * ggml_transpose(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
||
ggml_format_name(result, "%s (transposed)", a->name);
|
||
|
||
result->ne[0] = a->ne[1];
|
||
result->ne[1] = a->ne[0];
|
||
|
||
result->nb[0] = a->nb[1];
|
||
result->nb[1] = a->nb[0];
|
||
|
||
result->op = GGML_OP_TRANSPOSE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_get_rows
|
||
|
||
struct ggml_tensor * ggml_get_rows(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(a->ne[2] == b->ne[1]);
|
||
GGML_ASSERT(b->ne[3] == 1);
|
||
GGML_ASSERT(b->type == GGML_TYPE_I32);
|
||
|
||
// TODO: implement non F32 return
|
||
enum ggml_type type = GGML_TYPE_F32;
|
||
if (a->type == GGML_TYPE_I32) {
|
||
type = a->type;
|
||
}
|
||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
|
||
|
||
result->op = GGML_OP_GET_ROWS;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_get_rows_back
|
||
|
||
struct ggml_tensor * ggml_get_rows_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c) {
|
||
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
|
||
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
|
||
|
||
// TODO: implement non F32 return
|
||
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
|
||
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
|
||
|
||
result->op = GGML_OP_GET_ROWS_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_diag
|
||
|
||
struct ggml_tensor * ggml_diag(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
GGML_ASSERT(a->ne[1] == 1);
|
||
|
||
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
|
||
|
||
result->op = GGML_OP_DIAG;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_diag_mask_inf
|
||
|
||
static struct ggml_tensor * ggml_diag_mask_inf_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_past,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
int32_t params[] = { n_past };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_DIAG_MASK_INF;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_diag_mask_inf(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_past) {
|
||
return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_past) {
|
||
return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
|
||
}
|
||
|
||
// ggml_diag_mask_zero
|
||
|
||
static struct ggml_tensor * ggml_diag_mask_zero_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_past,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
int32_t params[] = { n_past };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_DIAG_MASK_ZERO;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_diag_mask_zero(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_past) {
|
||
return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int n_past) {
|
||
return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
|
||
}
|
||
|
||
// ggml_soft_max
|
||
|
||
static struct ggml_tensor * ggml_soft_max_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * mask,
|
||
float scale,
|
||
float max_bias,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
|
||
if (mask) {
|
||
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(ggml_is_contiguous(mask));
|
||
GGML_ASSERT(ggml_is_matrix(mask));
|
||
GGML_ASSERT(mask->ne[0] == a->ne[0]);
|
||
GGML_ASSERT(mask->ne[1] >= a->ne[1]);
|
||
}
|
||
|
||
if (max_bias > 0.0f) {
|
||
GGML_ASSERT(mask);
|
||
}
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
float params[] = { scale, max_bias };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_SOFT_MAX;
|
||
result->src[0] = a;
|
||
result->src[1] = mask;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_soft_max(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_soft_max_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a) {
|
||
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_soft_max_ext(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * mask,
|
||
float scale,
|
||
float max_bias) {
|
||
return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
|
||
}
|
||
|
||
// ggml_soft_max_back
|
||
|
||
static struct ggml_tensor * ggml_soft_max_back_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_SOFT_MAX_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_soft_max_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_soft_max_back_impl(ctx, a, b, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_soft_max_back_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_soft_max_back_impl(ctx, a, b, true);
|
||
}
|
||
|
||
// ggml_rope
|
||
|
||
static struct ggml_tensor * ggml_rope_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
int n_dims,
|
||
int mode,
|
||
int n_ctx_orig,
|
||
float freq_base,
|
||
float freq_scale,
|
||
float ext_factor,
|
||
float attn_factor,
|
||
float beta_fast,
|
||
float beta_slow,
|
||
bool inplace) {
|
||
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
|
||
|
||
GGML_ASSERT(ggml_is_vector(b));
|
||
GGML_ASSERT(b->type == GGML_TYPE_I32);
|
||
GGML_ASSERT(a->ne[2] == b->ne[0]);
|
||
|
||
if (c) {
|
||
GGML_ASSERT(c->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(c->ne[0] >= n_dims / 2);
|
||
}
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
|
||
memcpy(params + 5, &freq_base, sizeof(float));
|
||
memcpy(params + 6, &freq_scale, sizeof(float));
|
||
memcpy(params + 7, &ext_factor, sizeof(float));
|
||
memcpy(params + 8, &attn_factor, sizeof(float));
|
||
memcpy(params + 9, &beta_fast, sizeof(float));
|
||
memcpy(params + 10, &beta_slow, sizeof(float));
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_ROPE;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
result->src[2] = c;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rope(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int n_dims,
|
||
int mode) {
|
||
return ggml_rope_impl(
|
||
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
|
||
);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rope_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int n_dims,
|
||
int mode) {
|
||
return ggml_rope_impl(
|
||
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
|
||
);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rope_ext(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
int n_dims,
|
||
int mode,
|
||
int n_ctx_orig,
|
||
float freq_base,
|
||
float freq_scale,
|
||
float ext_factor,
|
||
float attn_factor,
|
||
float beta_fast,
|
||
float beta_slow) {
|
||
return ggml_rope_impl(
|
||
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow, false
|
||
);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rope_ext_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
int n_dims,
|
||
int mode,
|
||
int n_ctx_orig,
|
||
float freq_base,
|
||
float freq_scale,
|
||
float ext_factor,
|
||
float attn_factor,
|
||
float beta_fast,
|
||
float beta_slow) {
|
||
return ggml_rope_impl(
|
||
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow, true
|
||
);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rope_custom(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int n_dims,
|
||
int mode,
|
||
int n_ctx_orig,
|
||
float freq_base,
|
||
float freq_scale,
|
||
float ext_factor,
|
||
float attn_factor,
|
||
float beta_fast,
|
||
float beta_slow) {
|
||
return ggml_rope_impl(
|
||
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow, false
|
||
);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_rope_custom_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int n_dims,
|
||
int mode,
|
||
int n_ctx_orig,
|
||
float freq_base,
|
||
float freq_scale,
|
||
float ext_factor,
|
||
float attn_factor,
|
||
float beta_fast,
|
||
float beta_slow) {
|
||
return ggml_rope_impl(
|
||
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow, true
|
||
);
|
||
}
|
||
|
||
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
||
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
||
static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
|
||
return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
|
||
}
|
||
|
||
void ggml_rope_yarn_corr_dims(
|
||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
|
||
) {
|
||
// start and end correction dims
|
||
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
|
||
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
|
||
dims[0] = MAX(0, start);
|
||
dims[1] = MIN(n_dims - 1, end);
|
||
}
|
||
|
||
// ggml_rope_back
|
||
|
||
struct ggml_tensor * ggml_rope_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
int n_dims,
|
||
int mode,
|
||
int n_ctx_orig,
|
||
float freq_base,
|
||
float freq_scale,
|
||
float ext_factor,
|
||
float attn_factor,
|
||
float beta_fast,
|
||
float beta_slow) {
|
||
GGML_ASSERT(ggml_is_vector(b));
|
||
GGML_ASSERT(b->type == GGML_TYPE_I32);
|
||
GGML_ASSERT(a->ne[2] == b->ne[0]);
|
||
|
||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||
|
||
int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
|
||
memcpy(params + 5, &freq_base, sizeof(float));
|
||
memcpy(params + 6, &freq_scale, sizeof(float));
|
||
memcpy(params + 7, &ext_factor, sizeof(float));
|
||
memcpy(params + 8, &attn_factor, sizeof(float));
|
||
memcpy(params + 9, &beta_fast, sizeof(float));
|
||
memcpy(params + 10, &beta_slow, sizeof(float));
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_ROPE_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
result->src[2] = c;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_clamp
|
||
|
||
struct ggml_tensor * ggml_clamp(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
float min,
|
||
float max) {
|
||
// TODO: when implement backward, fix this:
|
||
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
||
|
||
float params[] = { min, max };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_CLAMP;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_conv_1d
|
||
|
||
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
|
||
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
|
||
}
|
||
|
||
GGML_API struct ggml_tensor * ggml_conv_1d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int s0,
|
||
int p0,
|
||
int d0) {
|
||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
|
||
|
||
struct ggml_tensor * result =
|
||
ggml_mul_mat(ctx,
|
||
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
|
||
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
|
||
|
||
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_conv_1d_ph
|
||
|
||
struct ggml_tensor* ggml_conv_1d_ph(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int s,
|
||
int d) {
|
||
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
|
||
}
|
||
|
||
// ggml_conv_transpose_1d
|
||
|
||
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
|
||
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
|
||
}
|
||
|
||
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int s0,
|
||
int p0,
|
||
int d0) {
|
||
GGML_ASSERT(ggml_is_matrix(b));
|
||
GGML_ASSERT(a->ne[2] == b->ne[1]);
|
||
GGML_ASSERT(a->ne[3] == 1);
|
||
|
||
GGML_ASSERT(p0 == 0);
|
||
GGML_ASSERT(d0 == 1);
|
||
|
||
const int64_t ne[4] = {
|
||
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
|
||
a->ne[1], b->ne[2], 1,
|
||
};
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
int32_t params[] = { s0, p0, d0 };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_CONV_TRANSPOSE_1D;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_conv_depthwise
|
||
|
||
struct ggml_tensor * ggml_conv_depthwise_2d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int s0,
|
||
int s1,
|
||
int p0,
|
||
int p1,
|
||
int d0,
|
||
int d1) {
|
||
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
|
||
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
|
||
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
|
||
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
|
||
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
|
||
|
||
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
|
||
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
|
||
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
|
||
|
||
return result;
|
||
}
|
||
// ggml_conv_2d
|
||
|
||
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
||
// a: [OC,IC, KH, KW]
|
||
// b: [N, IC, IH, IW]
|
||
// result: [N, OH, OW, IC*KH*KW]
|
||
struct ggml_tensor * ggml_im2col(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int s0,
|
||
int s1,
|
||
int p0,
|
||
int p1,
|
||
int d0,
|
||
int d1,
|
||
bool is_2D,
|
||
enum ggml_type dst_type) {
|
||
if(is_2D) {
|
||
GGML_ASSERT(a->ne[2] == b->ne[2]);
|
||
} else {
|
||
GGML_ASSERT(a->ne[1] == b->ne[1]);
|
||
GGML_ASSERT(b->ne[3] == 1);
|
||
}
|
||
|
||
const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
|
||
const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
|
||
|
||
GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
|
||
GGML_ASSERT((OW > 0) && "b too small compared to a");
|
||
|
||
const int64_t ne[4] = {
|
||
is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
|
||
OW,
|
||
is_2D ? OH : b->ne[2],
|
||
is_2D ? b->ne[3] : 1,
|
||
};
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
|
||
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_IM2COL;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_im2col_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int64_t * ne,
|
||
int s0,
|
||
int s1,
|
||
int p0,
|
||
int p1,
|
||
int d0,
|
||
int d1,
|
||
bool is_2D) {
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_IM2COL_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// a: [OC,IC, KH, KW]
|
||
// b: [N, IC, IH, IW]
|
||
// result: [N, OC, OH, OW]
|
||
struct ggml_tensor * ggml_conv_2d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int s0,
|
||
int s1,
|
||
int p0,
|
||
int p1,
|
||
int d0,
|
||
int d1) {
|
||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
|
||
|
||
struct ggml_tensor * result =
|
||
ggml_mul_mat(ctx,
|
||
ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
|
||
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
|
||
|
||
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
|
||
result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
|
||
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_conv_2d_sk_p0
|
||
|
||
struct ggml_tensor * ggml_conv_2d_sk_p0(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
|
||
}
|
||
|
||
// ggml_conv_2d_s1_ph
|
||
|
||
struct ggml_tensor * ggml_conv_2d_s1_ph(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
|
||
}
|
||
|
||
// ggml_conv_transpose_2d_p0
|
||
|
||
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
|
||
return (ins - 1) * s - 2 * p + ks;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
int stride) {
|
||
GGML_ASSERT(a->ne[3] == b->ne[2]);
|
||
|
||
const int64_t ne[4] = {
|
||
ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
|
||
ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
|
||
a->ne[2], b->ne[3],
|
||
};
|
||
|
||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
ggml_set_op_params_i32(result, 0, stride);
|
||
|
||
result->op = GGML_OP_CONV_TRANSPOSE_2D;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_pool_*
|
||
|
||
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
|
||
return (ins + 2 * p - ks) / s + 1;
|
||
}
|
||
|
||
// ggml_pool_1d
|
||
|
||
struct ggml_tensor * ggml_pool_1d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
enum ggml_op_pool op,
|
||
int k0,
|
||
int s0,
|
||
int p0) {
|
||
const int64_t ne[4] = {
|
||
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
||
a->ne[1],
|
||
a->ne[2],
|
||
a->ne[3],
|
||
};
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
int32_t params[] = { op, k0, s0, p0 };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_POOL_1D;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_pool_2d
|
||
|
||
struct ggml_tensor * ggml_pool_2d(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
enum ggml_op_pool op,
|
||
int k0,
|
||
int k1,
|
||
int s0,
|
||
int s1,
|
||
float p0,
|
||
float p1) {
|
||
struct ggml_tensor * result;
|
||
const int64_t ne[4] = {
|
||
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
||
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
|
||
a->ne[2],
|
||
a->ne[3],
|
||
};
|
||
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_POOL_2D;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_pool_2d_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * af,
|
||
enum ggml_op_pool op,
|
||
int k0,
|
||
int k1,
|
||
int s0,
|
||
int s1,
|
||
float p0,
|
||
float p1) {
|
||
struct ggml_tensor * result;
|
||
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
|
||
|
||
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_POOL_2D_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = af;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_upscale
|
||
|
||
static struct ggml_tensor * ggml_upscale_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int ne0,
|
||
int ne1,
|
||
int ne2,
|
||
int ne3) {
|
||
GGML_ASSERT(a->ne[0] <= ne0);
|
||
GGML_ASSERT(a->ne[1] <= ne1);
|
||
GGML_ASSERT(a->ne[2] <= ne2);
|
||
GGML_ASSERT(a->ne[3] <= ne3);
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
|
||
|
||
result->op = GGML_OP_UPSCALE;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_upscale(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int scale_factor) {
|
||
return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_upscale_ext(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int ne0,
|
||
int ne1,
|
||
int ne2,
|
||
int ne3) {
|
||
return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
|
||
}
|
||
|
||
// ggml_pad
|
||
|
||
struct ggml_tensor * ggml_pad(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int p0,
|
||
int p1,
|
||
int p2,
|
||
int p3) {
|
||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
|
||
a->ne[0] + p0,
|
||
a->ne[1] + p1,
|
||
a->ne[2] + p2,
|
||
a->ne[3] + p3);
|
||
|
||
result->op = GGML_OP_PAD;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_arange
|
||
|
||
struct ggml_tensor * ggml_arange(
|
||
struct ggml_context * ctx,
|
||
float start,
|
||
float stop,
|
||
float step) {
|
||
GGML_ASSERT(stop > start);
|
||
|
||
const int64_t steps = (int64_t) ceilf((stop - start) / step);
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
|
||
|
||
ggml_set_op_params_f32(result, 0, start);
|
||
ggml_set_op_params_f32(result, 1, stop);
|
||
ggml_set_op_params_f32(result, 2, step);
|
||
|
||
result->op = GGML_OP_ARANGE;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_timestep_embedding
|
||
|
||
struct ggml_tensor * ggml_timestep_embedding(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * timesteps,
|
||
int dim,
|
||
int max_period) {
|
||
int actual_dim = dim;
|
||
if (dim % 2 != 0) {
|
||
actual_dim = dim + 1;
|
||
}
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
|
||
|
||
ggml_set_op_params_i32(result, 0, dim);
|
||
ggml_set_op_params_i32(result, 1, max_period);
|
||
|
||
result->op = GGML_OP_TIMESTEP_EMBEDDING;
|
||
result->src[0] = timesteps;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_argsort
|
||
|
||
struct ggml_tensor * ggml_argsort(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
enum ggml_sort_order order) {
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
|
||
|
||
ggml_set_op_params_i32(result, 0, (int32_t) order);
|
||
|
||
result->op = GGML_OP_ARGSORT;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_top_k
|
||
|
||
struct ggml_tensor * ggml_top_k(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int k) {
|
||
GGML_ASSERT(a->ne[0] >= k);
|
||
|
||
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
|
||
|
||
result = ggml_view_4d(ctx, result,
|
||
k, result->ne[1], result->ne[2], result->ne[3],
|
||
result->nb[1], result->nb[2], result->nb[3],
|
||
0);
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_flash_attn_ext
|
||
|
||
struct ggml_tensor * ggml_flash_attn_ext(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * q,
|
||
struct ggml_tensor * k,
|
||
struct ggml_tensor * v,
|
||
struct ggml_tensor * mask,
|
||
float scale,
|
||
float max_bias,
|
||
float logit_softcap) {
|
||
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
||
// TODO: check if vT can be multiplied by (k*qT)
|
||
|
||
if (mask) {
|
||
GGML_ASSERT(ggml_is_contiguous(mask));
|
||
GGML_ASSERT(mask->ne[2] == 1);
|
||
GGML_ASSERT(mask->ne[3] == 1);
|
||
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
|
||
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
|
||
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
|
||
}
|
||
|
||
if (max_bias > 0.0f) {
|
||
GGML_ASSERT(mask);
|
||
}
|
||
|
||
bool is_node = false;
|
||
|
||
// permute(0, 2, 1, 3)
|
||
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
float params[] = { scale, max_bias, logit_softcap };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_FLASH_ATTN_EXT;
|
||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||
result->src[0] = q;
|
||
result->src[1] = k;
|
||
result->src[2] = v;
|
||
result->src[3] = mask;
|
||
|
||
return result;
|
||
}
|
||
|
||
void ggml_flash_attn_ext_set_prec(
|
||
struct ggml_tensor * a,
|
||
enum ggml_prec prec) {
|
||
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
|
||
|
||
const int32_t prec_i32 = (int32_t) prec;
|
||
|
||
ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
|
||
}
|
||
|
||
enum ggml_prec ggml_flash_attn_ext_get_prec(
|
||
const struct ggml_tensor * a) {
|
||
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
|
||
|
||
const int32_t prec_i32 = ggml_get_op_params_i32(a, 3);
|
||
|
||
return (enum ggml_prec) prec_i32;
|
||
}
|
||
|
||
// ggml_flash_attn_back
|
||
|
||
struct ggml_tensor * ggml_flash_attn_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * q,
|
||
struct ggml_tensor * k,
|
||
struct ggml_tensor * v,
|
||
struct ggml_tensor * d,
|
||
bool masked) {
|
||
GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
|
||
|
||
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
||
// TODO: check if vT can be multiplied by (k*qT)
|
||
|
||
// d shape [D,N,ne2,ne3]
|
||
// q shape [D,N,ne2,ne3]
|
||
// k shape [D,M,kvne2,ne3]
|
||
// v shape [M,D,kvne2,ne3]
|
||
|
||
const int64_t D = q->ne[0];
|
||
const int64_t N = q->ne[1];
|
||
const int64_t M = k->ne[1];
|
||
const int64_t ne2 = q->ne[2];
|
||
const int64_t ne3 = q->ne[3];
|
||
const int64_t kvne2 = k->ne[2];
|
||
|
||
GGML_ASSERT(k->ne[0] == D);
|
||
GGML_ASSERT(v->ne[0] == M);
|
||
GGML_ASSERT(v->ne[1] == D);
|
||
GGML_ASSERT(d->ne[0] == D);
|
||
GGML_ASSERT(d->ne[1] == N);
|
||
GGML_ASSERT(k->ne[2] == kvne2);
|
||
GGML_ASSERT(k->ne[3] == ne3);
|
||
GGML_ASSERT(v->ne[2] == kvne2);
|
||
GGML_ASSERT(v->ne[3] == ne3);
|
||
GGML_ASSERT(d->ne[2] == ne2);
|
||
GGML_ASSERT(d->ne[3] == ne3);
|
||
|
||
GGML_ASSERT(ne2 % kvne2 == 0);
|
||
|
||
bool is_node = false;
|
||
|
||
if (q->grad || k->grad || v->grad) {
|
||
// when using this operation (in backwards pass) these grads are set.
|
||
// we don't want to create (big) grad of our result, so is_node is false.
|
||
is_node = false;
|
||
}
|
||
|
||
// store gradients of q, k and v as continuous tensors concatenated in result.
|
||
// note: v and gradv are actually transposed, i.e. v->ne[0] != D.
|
||
const int64_t elem_q = ggml_nelements(q);
|
||
const int64_t elem_k = ggml_nelements(k);
|
||
const int64_t elem_v = ggml_nelements(v);
|
||
|
||
enum ggml_type result_type = GGML_TYPE_F32;
|
||
GGML_ASSERT(ggml_blck_size(result_type) == 1);
|
||
const size_t tsize = ggml_type_size(result_type);
|
||
|
||
const size_t offs_q = 0;
|
||
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
|
||
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
|
||
const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
|
||
|
||
const size_t nelements = (end + tsize - 1)/tsize;
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
|
||
|
||
int32_t masked_i = masked ? 1 : 0;
|
||
ggml_set_op_params(result, &masked_i, sizeof(masked_i));
|
||
|
||
result->op = GGML_OP_FLASH_ATTN_BACK;
|
||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||
result->src[0] = q;
|
||
result->src[1] = k;
|
||
result->src[2] = v;
|
||
result->src[3] = d;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_ssm_conv
|
||
|
||
struct ggml_tensor * ggml_ssm_conv(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * sx,
|
||
struct ggml_tensor * c) {
|
||
GGML_ASSERT(ggml_is_3d(sx));
|
||
GGML_ASSERT(ggml_is_matrix(c));
|
||
|
||
const int64_t d_conv = c->ne[0];
|
||
const int64_t d_inner = c->ne[1];
|
||
const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
|
||
const int64_t n_s = sx->ne[2];
|
||
|
||
// TODO: maybe support other strides than 1?
|
||
// FIXME: this is always true?
|
||
GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
|
||
GGML_ASSERT(sx->ne[1] == d_inner);
|
||
GGML_ASSERT(n_t >= 0);
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
|
||
|
||
result->op = GGML_OP_SSM_CONV;
|
||
result->src[0] = sx;
|
||
result->src[1] = c;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_ssm_scan
|
||
|
||
struct ggml_tensor * ggml_ssm_scan(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * s,
|
||
struct ggml_tensor * x,
|
||
struct ggml_tensor * dt,
|
||
struct ggml_tensor * A,
|
||
struct ggml_tensor * B,
|
||
struct ggml_tensor * C) {
|
||
GGML_ASSERT(ggml_is_contiguous(s));
|
||
GGML_ASSERT(ggml_is_contiguous(x));
|
||
GGML_ASSERT(ggml_is_contiguous(dt));
|
||
GGML_ASSERT(ggml_is_contiguous(A));
|
||
GGML_ASSERT(ggml_is_matrix(A));
|
||
GGML_ASSERT(ggml_is_3d(B));
|
||
GGML_ASSERT(ggml_is_3d(s));
|
||
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
|
||
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
|
||
GGML_ASSERT(ggml_are_same_shape(x, dt));
|
||
GGML_ASSERT(ggml_are_same_shape(B, C));
|
||
|
||
{
|
||
const int64_t d_state = s->ne[0];
|
||
const int64_t d_inner = s->ne[1];
|
||
const int64_t n_seq_tokens = x->ne[1];
|
||
const int64_t n_seqs = x->ne[2];
|
||
|
||
GGML_ASSERT(s->ne[2] == n_seqs);
|
||
GGML_ASSERT(x->ne[0] == d_inner);
|
||
GGML_ASSERT(A->ne[0] == d_state);
|
||
GGML_ASSERT(A->ne[1] == d_inner);
|
||
GGML_ASSERT(B->ne[0] == d_state);
|
||
GGML_ASSERT(B->ne[1] == n_seq_tokens);
|
||
GGML_ASSERT(B->ne[2] == n_seqs);
|
||
}
|
||
|
||
// concatenated y + ssm_states
|
||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
|
||
|
||
result->op = GGML_OP_SSM_SCAN;
|
||
result->src[0] = s;
|
||
result->src[1] = x;
|
||
result->src[2] = dt;
|
||
result->src[3] = A;
|
||
result->src[4] = B;
|
||
result->src[5] = C;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_win_part
|
||
|
||
struct ggml_tensor * ggml_win_part(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int w) {
|
||
GGML_ASSERT(a->ne[3] == 1);
|
||
GGML_ASSERT(a->type == GGML_TYPE_F32);
|
||
|
||
// padding
|
||
const int px = (w - a->ne[1]%w)%w;
|
||
const int py = (w - a->ne[2]%w)%w;
|
||
|
||
const int npx = (px + a->ne[1])/w;
|
||
const int npy = (py + a->ne[2])/w;
|
||
const int np = npx*npy;
|
||
|
||
const int64_t ne[4] = { a->ne[0], w, w, np, };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
int32_t params[] = { npx, npy, w };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_WIN_PART;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_win_unpart
|
||
|
||
struct ggml_tensor * ggml_win_unpart(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int w0,
|
||
int h0,
|
||
int w) {
|
||
GGML_ASSERT(a->type == GGML_TYPE_F32);
|
||
|
||
const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||
|
||
int32_t params[] = { w };
|
||
ggml_set_op_params(result, params, sizeof(params));
|
||
|
||
result->op = GGML_OP_WIN_UNPART;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_get_rel_pos
|
||
|
||
struct ggml_tensor * ggml_get_rel_pos(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
int qh,
|
||
int kh) {
|
||
GGML_ASSERT(qh == kh);
|
||
GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
|
||
|
||
const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
|
||
|
||
result->op = GGML_OP_GET_REL_POS;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_add_rel_pos
|
||
|
||
static struct ggml_tensor * ggml_add_rel_pos_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * pw,
|
||
struct ggml_tensor * ph,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_are_same_shape(pw, ph));
|
||
GGML_ASSERT(ggml_is_contiguous(a));
|
||
GGML_ASSERT(ggml_is_contiguous(pw));
|
||
GGML_ASSERT(ggml_is_contiguous(ph));
|
||
GGML_ASSERT(ph->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(pw->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(pw->ne[3] == a->ne[2]);
|
||
GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
|
||
GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
|
||
|
||
result->op = GGML_OP_ADD_REL_POS;
|
||
result->src[0] = a;
|
||
result->src[1] = pw;
|
||
result->src[2] = ph;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_add_rel_pos(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * pw,
|
||
struct ggml_tensor * ph) {
|
||
return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_add_rel_pos_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * pw,
|
||
struct ggml_tensor * ph) {
|
||
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
|
||
}
|
||
|
||
// ggml_rwkv_wkv6
|
||
|
||
struct ggml_tensor * ggml_rwkv_wkv6(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * k,
|
||
struct ggml_tensor * v,
|
||
struct ggml_tensor * r,
|
||
struct ggml_tensor * tf,
|
||
struct ggml_tensor * td,
|
||
struct ggml_tensor * state) {
|
||
GGML_ASSERT(ggml_is_contiguous(k));
|
||
GGML_ASSERT(ggml_is_contiguous(v));
|
||
GGML_ASSERT(ggml_is_contiguous(r));
|
||
GGML_ASSERT(ggml_is_contiguous(tf));
|
||
GGML_ASSERT(ggml_is_contiguous(td));
|
||
GGML_ASSERT(ggml_is_contiguous(state));
|
||
|
||
const int64_t S = k->ne[0];
|
||
const int64_t H = k->ne[2];
|
||
const int64_t n_tokens = k->ne[3];
|
||
const int64_t n_seqs = state->ne[1];
|
||
{
|
||
GGML_ASSERT(k->ne[1] == 1);
|
||
GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
|
||
GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
|
||
// TODO: RWKV v4 and v5
|
||
GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
|
||
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
|
||
}
|
||
|
||
// concat output and new_state
|
||
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
|
||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||
|
||
result->op = GGML_OP_RWKV_WKV6;
|
||
result->src[0] = k;
|
||
result->src[1] = v;
|
||
result->src[2] = r;
|
||
result->src[3] = tf;
|
||
result->src[4] = td;
|
||
result->src[5] = state;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_unary
|
||
|
||
static struct ggml_tensor * ggml_unary_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
enum ggml_unary_op op,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_is_contiguous_1(a));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params_i32(result, 0, (int32_t) op);
|
||
|
||
result->op = GGML_OP_UNARY;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_unary(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
enum ggml_unary_op op) {
|
||
return ggml_unary_impl(ctx, a, op, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_unary_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
enum ggml_unary_op op) {
|
||
return ggml_unary_impl(ctx, a, op, true);
|
||
}
|
||
|
||
// ggml_map_unary
|
||
|
||
static struct ggml_tensor * ggml_map_unary_impl_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_unary_op_f32_t fun,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||
|
||
result->op = GGML_OP_MAP_UNARY;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_unary_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_unary_op_f32_t fun) {
|
||
return ggml_map_unary_impl_f32(ctx, a, fun, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_unary_op_f32_t fun) {
|
||
return ggml_map_unary_impl_f32(ctx, a, fun, true);
|
||
}
|
||
|
||
// ggml_map_binary
|
||
|
||
static struct ggml_tensor * ggml_map_binary_impl_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_binary_op_f32_t fun,
|
||
bool inplace) {
|
||
GGML_ASSERT(ggml_are_same_shape(a, b));
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||
|
||
result->op = GGML_OP_MAP_BINARY;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_binary_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_binary_op_f32_t fun) {
|
||
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_binary_op_f32_t fun) {
|
||
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
|
||
}
|
||
|
||
// ggml_map_custom1_f32
|
||
|
||
static struct ggml_tensor * ggml_map_custom1_impl_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_custom1_op_f32_t fun,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||
|
||
result->op = GGML_OP_MAP_CUSTOM1_F32;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom1_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_custom1_op_f32_t fun) {
|
||
return ggml_map_custom1_impl_f32(ctx, a, fun, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_custom1_op_f32_t fun) {
|
||
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
|
||
}
|
||
|
||
// ggml_map_custom2_f32
|
||
|
||
static struct ggml_tensor * ggml_map_custom2_impl_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_custom2_op_f32_t fun,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||
|
||
result->op = GGML_OP_MAP_CUSTOM2_F32;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom2_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_custom2_op_f32_t fun) {
|
||
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_custom2_op_f32_t fun) {
|
||
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
|
||
}
|
||
|
||
// ggml_map_custom3_f32
|
||
|
||
static struct ggml_tensor * ggml_map_custom3_impl_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
const ggml_custom3_op_f32_t fun,
|
||
bool inplace) {
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||
|
||
result->op = GGML_OP_MAP_CUSTOM3_F32;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
result->src[2] = c;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom3_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
const ggml_custom3_op_f32_t fun) {
|
||
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
const ggml_custom3_op_f32_t fun) {
|
||
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
|
||
}
|
||
|
||
// ggml_map_custom1
|
||
|
||
static struct ggml_tensor * ggml_map_custom1_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_custom1_op_t fun,
|
||
int n_tasks,
|
||
void * userdata,
|
||
bool inplace) {
|
||
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
struct ggml_map_custom1_op_params params = {
|
||
/*.fun =*/ fun,
|
||
/*.n_tasks =*/ n_tasks,
|
||
/*.userdata =*/ userdata
|
||
};
|
||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||
|
||
result->op = GGML_OP_MAP_CUSTOM1;
|
||
result->src[0] = a;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom1(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_custom1_op_t fun,
|
||
int n_tasks,
|
||
void * userdata) {
|
||
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom1_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
const ggml_custom1_op_t fun,
|
||
int n_tasks,
|
||
void * userdata) {
|
||
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
|
||
}
|
||
|
||
// ggml_map_custom2
|
||
|
||
static struct ggml_tensor * ggml_map_custom2_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_custom2_op_t fun,
|
||
int n_tasks,
|
||
void * userdata,
|
||
bool inplace) {
|
||
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
struct ggml_map_custom2_op_params params = {
|
||
/*.fun =*/ fun,
|
||
/*.n_tasks =*/ n_tasks,
|
||
/*.userdata =*/ userdata
|
||
};
|
||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||
|
||
result->op = GGML_OP_MAP_CUSTOM2;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom2(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_custom2_op_t fun,
|
||
int n_tasks,
|
||
void * userdata) {
|
||
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom2_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const ggml_custom2_op_t fun,
|
||
int n_tasks,
|
||
void * userdata) {
|
||
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
|
||
}
|
||
|
||
// ggml_map_custom3
|
||
|
||
static struct ggml_tensor * ggml_map_custom3_impl(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
const ggml_custom3_op_t fun,
|
||
int n_tasks,
|
||
void * userdata,
|
||
bool inplace) {
|
||
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||
|
||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||
|
||
struct ggml_map_custom3_op_params params = {
|
||
/*.fun =*/ fun,
|
||
/*.n_tasks =*/ n_tasks,
|
||
/*.userdata =*/ userdata
|
||
};
|
||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||
|
||
result->op = GGML_OP_MAP_CUSTOM3;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
result->src[2] = c;
|
||
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom3(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
const ggml_custom3_op_t fun,
|
||
int n_tasks,
|
||
void * userdata) {
|
||
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
|
||
}
|
||
|
||
struct ggml_tensor * ggml_map_custom3_inplace(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c,
|
||
const ggml_custom3_op_t fun,
|
||
int n_tasks,
|
||
void * userdata) {
|
||
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
|
||
}
|
||
|
||
// ggml_cross_entropy_loss
|
||
|
||
struct ggml_tensor * ggml_cross_entropy_loss(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b) {
|
||
GGML_ASSERT(ggml_are_same_shape(a, b));
|
||
|
||
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
|
||
|
||
result->op = GGML_OP_CROSS_ENTROPY_LOSS;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
|
||
return result;
|
||
}
|
||
|
||
// ggml_cross_entropy_loss_back
|
||
|
||
struct ggml_tensor * ggml_cross_entropy_loss_back(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_tensor * c) {
|
||
GGML_ASSERT(ggml_are_same_shape(a, b));
|
||
GGML_ASSERT(ggml_is_scalar(c));
|
||
|
||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||
|
||
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
|
||
result->src[0] = a;
|
||
result->src[1] = b;
|
||
result->src[2] = c;
|
||
|
||
return result;
|
||
}
|
||
|
||
// opt_step_adamw
|
||
|
||
struct ggml_tensor * ggml_opt_step_adamw(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * grad,
|
||
float alpha,
|
||
float beta1,
|
||
float beta2,
|
||
float eps,
|
||
float wd) {
|
||
GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
|
||
GGML_ASSERT(ggml_are_same_shape(a, grad));
|
||
GGML_ASSERT(alpha > 0.0f);
|
||
GGML_ASSERT(beta1 >= 0.0f && beta1 <= 1.0f);
|
||
GGML_ASSERT(beta2 >= 0.0f && beta2 <= 1.0f);
|
||
GGML_ASSERT(eps >= 0.0f);
|
||
GGML_ASSERT(wd >= 0.0f && wd <= 1.0f);
|
||
|
||
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
||
|
||
const int64_t iter = 1;
|
||
memcpy(&result->op_params[0], &iter, sizeof(int64_t));
|
||
ggml_set_op_params_f32(result, 2, alpha);
|
||
ggml_set_op_params_f32(result, 3, beta1);
|
||
ggml_set_op_params_f32(result, 4, beta2);
|
||
ggml_set_op_params_f32(result, 5, eps);
|
||
ggml_set_op_params_f32(result, 6, wd);
|
||
|
||
result->op = GGML_OP_OPT_STEP_ADAMW;
|
||
result->src[0] = a;
|
||
result->src[1] = grad;
|
||
result->src[2] = ggml_dup_tensor(ctx, grad);
|
||
result->src[3] = ggml_dup_tensor(ctx, grad);
|
||
|
||
return result;
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
struct ggml_hash_set ggml_hash_set_new(size_t size) {
|
||
size = ggml_hash_size(size);
|
||
struct ggml_hash_set result;
|
||
result.size = size;
|
||
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
|
||
result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
|
||
return result;
|
||
}
|
||
|
||
void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
|
||
memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
|
||
}
|
||
|
||
void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
|
||
GGML_FREE(hash_set->used);
|
||
GGML_FREE(hash_set->keys);
|
||
}
|
||
|
||
size_t ggml_hash_size(size_t min_sz) {
|
||
// next primes after powers of two
|
||
static const size_t primes[] = {
|
||
2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
|
||
2053, 4099, 8209, 16411, 32771, 65537, 131101,
|
||
262147, 524309, 1048583, 2097169, 4194319, 8388617,
|
||
16777259, 33554467, 67108879, 134217757, 268435459,
|
||
536870923, 1073741827, 2147483659
|
||
};
|
||
static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
|
||
|
||
// find the smallest prime that is larger or equal than min_sz
|
||
size_t l = 0;
|
||
size_t r = n_primes;
|
||
while (l < r) {
|
||
size_t m = (l + r)/2;
|
||
if (primes[m] < min_sz) {
|
||
l = m + 1;
|
||
} else {
|
||
r = m;
|
||
}
|
||
}
|
||
size_t sz = l < n_primes ? primes[l] : min_sz | 1;
|
||
return sz;
|
||
}
|
||
|
||
struct hash_map {
|
||
struct ggml_hash_set set;
|
||
struct ggml_tensor ** vals;
|
||
};
|
||
|
||
static struct hash_map * ggml_new_hash_map(size_t size) {
|
||
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
|
||
result->set = ggml_hash_set_new(size);
|
||
result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
|
||
return result;
|
||
}
|
||
|
||
static void ggml_hash_map_free(struct hash_map * map) {
|
||
ggml_hash_set_free(&map->set);
|
||
GGML_FREE(map->vals);
|
||
GGML_FREE(map);
|
||
}
|
||
|
||
// gradient checkpointing
|
||
|
||
static struct ggml_tensor * ggml_recompute_graph_node(
|
||
struct ggml_context * ctx,
|
||
struct ggml_cgraph * graph,
|
||
struct hash_map * replacements,
|
||
struct ggml_tensor * node) {
|
||
|
||
if (node == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||
return node;
|
||
}
|
||
|
||
if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
|
||
return node;
|
||
}
|
||
|
||
int count_children = 0;
|
||
for (int k = 0; k < GGML_MAX_SRC; ++k) {
|
||
if (node->src[k]) {
|
||
++count_children;
|
||
}
|
||
}
|
||
|
||
if (count_children == 0) {
|
||
return node;
|
||
}
|
||
|
||
size_t i = ggml_hash_find(&replacements->set, node);
|
||
GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
|
||
if (replacements->set.keys[i] == node) {
|
||
return replacements->vals[i];
|
||
}
|
||
|
||
struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
|
||
|
||
// insert clone into replacements
|
||
GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
|
||
replacements->set.keys[i] = node;
|
||
replacements->vals[i] = clone;
|
||
|
||
clone->op = node->op;
|
||
clone->grad = node->grad;
|
||
clone->flags = node->flags;
|
||
clone->extra = node->extra;
|
||
for (int k = 0; k < GGML_MAX_DIMS; ++k) {
|
||
clone->nb[k] = node->nb[k];
|
||
}
|
||
for (int k = 0; k < GGML_MAX_SRC; ++k) {
|
||
clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
|
||
}
|
||
if (node->view_src != NULL) {
|
||
clone->data = (node->view_src->data == NULL)
|
||
? NULL // view_src not yet allocated
|
||
: (char *) node->view_src->data // view_src already allocated
|
||
+ node->view_offs;
|
||
clone->view_src = node->view_src;
|
||
clone->view_offs = node->view_offs;
|
||
}
|
||
|
||
GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
|
||
GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
|
||
memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
|
||
ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
|
||
|
||
return clone;
|
||
}
|
||
|
||
void ggml_build_backward_gradient_checkpointing(
|
||
struct ggml_context * ctx,
|
||
struct ggml_cgraph * gf,
|
||
struct ggml_cgraph * gb,
|
||
struct ggml_cgraph * gb_tmp,
|
||
struct ggml_tensor * * checkpoints,
|
||
int n_checkpoints) {
|
||
ggml_graph_cpy(gf, gb_tmp);
|
||
ggml_build_backward_expand(ctx, gf, gb_tmp, false);
|
||
|
||
if (n_checkpoints <= 0) {
|
||
ggml_graph_cpy(gb_tmp, gb);
|
||
return;
|
||
}
|
||
|
||
struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
|
||
|
||
// insert checkpoints in replacements
|
||
for (int i = 0; i < n_checkpoints; ++i) {
|
||
size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
|
||
GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
|
||
GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
|
||
replacements->set.keys[k] = checkpoints[i];
|
||
replacements->vals[k] = checkpoints[i];
|
||
}
|
||
|
||
ggml_graph_cpy(gf, gb);
|
||
// rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
|
||
// replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
|
||
// by recomputing them from checkpoints
|
||
for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
|
||
struct ggml_tensor * node = gb_tmp->nodes[i];
|
||
for (int k = 0; k < GGML_MAX_SRC; ++k) {
|
||
// insert new tensors recomputing src, reusing already made replacements,
|
||
// remember replacements: remember new tensors with mapping from corresponding gf nodes
|
||
// recurse for input tensors,
|
||
// unless (i.e. terminating when) input tensors are replacements (like checkpoints)
|
||
node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
|
||
}
|
||
// insert rewritten backward node with replacements made into resulting backward graph gb
|
||
ggml_build_forward_expand(gb, node);
|
||
}
|
||
|
||
ggml_hash_map_free(replacements);
|
||
}
|
||
|
||
// utility functions to change gradients
|
||
// if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
|
||
// else if a is in zero_table, replace a
|
||
// else, just add/subtract/etc. the gradients
|
||
|
||
static struct ggml_tensor * ggml_add_or_set(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_hash_set * zero_table,
|
||
struct ggml_hash_set * acc_table) {
|
||
if (ggml_hash_contains(acc_table, a)) {
|
||
struct ggml_tensor * ret = ggml_add_impl(ctx, a, b, true);
|
||
const size_t insert_result = ggml_hash_insert(acc_table, ret);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
|
||
return ret;
|
||
}
|
||
if (ggml_hash_contains(zero_table, a)) {
|
||
return b;
|
||
}
|
||
return ggml_add_impl(ctx, a, b, false);
|
||
}
|
||
|
||
static struct ggml_tensor * ggml_acc_or_set(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
const size_t nb1,
|
||
const size_t nb2,
|
||
const size_t nb3,
|
||
const size_t offset,
|
||
struct ggml_hash_set * zero_table,
|
||
struct ggml_hash_set * acc_table) {
|
||
if (ggml_hash_contains(acc_table, a)) {
|
||
struct ggml_tensor * ret = ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
|
||
const size_t insert_result = ggml_hash_insert(acc_table, ret);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
|
||
return ret;
|
||
}
|
||
if (ggml_hash_contains(zero_table, a)) {
|
||
struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
|
||
return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
|
||
}
|
||
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
||
}
|
||
|
||
static struct ggml_tensor * ggml_add1_or_set(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_hash_set * zero_table,
|
||
struct ggml_hash_set * acc_table) {
|
||
if (ggml_hash_contains(acc_table, a)) {
|
||
struct ggml_tensor * ret = ggml_add1_impl(ctx, a, b, true);
|
||
const size_t insert_result = ggml_hash_insert(acc_table, ret);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
|
||
return ret;
|
||
}
|
||
if (ggml_hash_contains(zero_table, a)) {
|
||
return ggml_repeat(ctx, b, a);
|
||
}
|
||
return ggml_add1_impl(ctx, a, b, false);
|
||
}
|
||
|
||
static struct ggml_tensor * ggml_sub_or_set(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * a,
|
||
struct ggml_tensor * b,
|
||
struct ggml_hash_set * zero_table,
|
||
struct ggml_hash_set * acc_table) {
|
||
if (ggml_hash_contains(acc_table, a)) {
|
||
struct ggml_tensor * ret = ggml_sub_impl(ctx, a, b, true);
|
||
const size_t insert_result = ggml_hash_insert(acc_table, ret);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
|
||
return ret;
|
||
}
|
||
if (ggml_hash_contains(zero_table, a)) {
|
||
return ggml_neg(ctx, b);
|
||
}
|
||
return ggml_sub_impl(ctx, a, b, false);
|
||
}
|
||
|
||
static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table, struct ggml_hash_set * acc_table) {
|
||
struct ggml_tensor * src0 = tensor->src[0];
|
||
struct ggml_tensor * src1 = tensor->src[1];
|
||
struct ggml_tensor * src2 = tensor->src[2];
|
||
|
||
switch (tensor->op) {
|
||
case GGML_OP_DUP:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_ADD:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
if (ggml_are_same_shape(src0, src1)) {
|
||
src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
|
||
} else {
|
||
src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table, acc_table);
|
||
}
|
||
}
|
||
} break;
|
||
case GGML_OP_ADD1:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
src1->grad = ggml_add_or_set(ctx,
|
||
src1->grad,
|
||
ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_ACC:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
|
||
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
|
||
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
|
||
const size_t offset = ((int32_t *) tensor->op_params)[3];
|
||
|
||
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
|
||
tensor->grad,
|
||
src1->grad->ne[0],
|
||
src1->grad->ne[1],
|
||
src1->grad->ne[2],
|
||
src1->grad->ne[3],
|
||
nb1, nb2, nb3, offset);
|
||
|
||
src1->grad =
|
||
ggml_add_or_set(ctx,
|
||
src1->grad,
|
||
ggml_reshape(ctx,
|
||
ggml_cont(ctx, tensor_grad_view),
|
||
src1->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SUB:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_MUL:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_mul(ctx, src1, tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
src1->grad =
|
||
ggml_add_or_set(ctx,
|
||
src1->grad,
|
||
ggml_mul(ctx, src0, tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_DIV:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_div(ctx, tensor->grad, src1),
|
||
zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
src1->grad =
|
||
ggml_sub_or_set(ctx,
|
||
src1->grad,
|
||
ggml_mul(ctx,
|
||
tensor->grad,
|
||
ggml_div(ctx, tensor, src1)),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SQR:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_scale(ctx,
|
||
ggml_mul(ctx, src0, tensor->grad),
|
||
2.0f),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SQRT:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_scale(ctx,
|
||
ggml_div(ctx,
|
||
tensor->grad,
|
||
tensor),
|
||
0.5f),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_LOG:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_div(ctx,
|
||
tensor->grad,
|
||
src0),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SIN:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_mul(ctx,
|
||
tensor->grad,
|
||
ggml_cos(ctx, src0)),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_COS:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_sub_or_set(ctx,
|
||
src0->grad,
|
||
ggml_mul(ctx,
|
||
tensor->grad,
|
||
ggml_sin(ctx, src0)),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SUM:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add1_or_set(ctx,
|
||
src0->grad,
|
||
tensor->grad,
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SUM_ROWS:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_repeat(ctx,
|
||
tensor->grad,
|
||
src0->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_MEAN:
|
||
case GGML_OP_ARGMAX:
|
||
case GGML_OP_COUNT_EQUAL:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: implement
|
||
}
|
||
case GGML_OP_REPEAT:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_repeat_back(ctx, tensor->grad, src0->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_REPEAT_BACK:
|
||
{
|
||
if (src0->grad) {
|
||
// TODO: test this
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_repeat(ctx, tensor->grad, src0->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_CONCAT:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: implement
|
||
}
|
||
case GGML_OP_SILU_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_NORM:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_RMS_NORM:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
float eps;
|
||
memcpy(&eps, tensor->op_params, sizeof(float));
|
||
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_RMS_NORM_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_GROUP_NORM:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_MUL_MAT:
|
||
{
|
||
// https://cs231n.github.io/optimization-2/#staged
|
||
// # forward pass
|
||
// s0 = np.random.randn(5, 10)
|
||
// s1 = np.random.randn(10, 3)
|
||
// t = s0.dot(s1)
|
||
|
||
// # now suppose we had the gradient on t from above in the circuit
|
||
// dt = np.random.randn(*t.shape) # same shape as t
|
||
// ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
|
||
// ds1 = t.T.dot(dt)
|
||
|
||
// tensor.shape [m,p,qq,rr]
|
||
// src0.shape [n,m,q1,r1]
|
||
// src1.shape [n,p,qq,rr]
|
||
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
struct ggml_tensor * s1_tg =
|
||
ggml_out_prod(ctx, // [n,m,qq,rr]
|
||
src1, // [n,p,qq,rr]
|
||
tensor->grad); // [m,p,qq,rr]
|
||
const int64_t qq = s1_tg->ne[2];
|
||
const int64_t rr = s1_tg->ne[3];
|
||
const int64_t q1 = src0->ne[2];
|
||
const int64_t r1 = src0->ne[3];
|
||
const bool ne2_broadcasted = qq > q1;
|
||
const bool ne3_broadcasted = rr > r1;
|
||
if (ne2_broadcasted || ne3_broadcasted) {
|
||
// sum broadcast repetitions of s1_tg into shape of src0
|
||
s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
|
||
}
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad, // [n,m,q1,r1]
|
||
s1_tg, // [n,m,q1,r1]
|
||
zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
src1->grad =
|
||
ggml_add_or_set(ctx,
|
||
src1->grad, // [n,p,qq,rr]
|
||
// ggml_mul_mat(ctx, // [n,p,qq,rr]
|
||
// ggml_cont(ctx, // [m,n,q1,r1]
|
||
// ggml_transpose(ctx, src0)), // [m,n,q1,r1]
|
||
// tensor->grad), // [m,p,qq,rr]
|
||
|
||
// // when src0 is bigger than tensor->grad (this is mostly the case in llama),
|
||
// // avoid transpose of src0, rather transpose smaller tensor->grad
|
||
// // and then use ggml_out_prod
|
||
ggml_out_prod(ctx, // [n,p,qq,rr]
|
||
src0, // [n,m,q1,r1]
|
||
ggml_transpose(ctx, // [p,m,qq,rr]
|
||
tensor->grad)), // [m,p,qq,rr]
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_MUL_MAT_ID:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_OUT_PROD:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_SCALE:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
float s;
|
||
memcpy(&s, tensor->op_params, sizeof(float));
|
||
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_scale_impl(ctx, tensor->grad, s, false),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SET:
|
||
{
|
||
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
|
||
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
|
||
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
|
||
const size_t offset = ((int32_t *) tensor->op_params)[3];
|
||
|
||
struct ggml_tensor * tensor_grad_view = NULL;
|
||
|
||
if (src0->grad || src1->grad) {
|
||
GGML_ASSERT(src0->type == tensor->type);
|
||
GGML_ASSERT(tensor->grad->type == tensor->type);
|
||
GGML_ASSERT(!src1->grad || src1->grad->type == tensor->grad->type);
|
||
|
||
tensor_grad_view = ggml_view_4d(ctx,
|
||
tensor->grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
|
||
nb1, nb2, nb3, offset);
|
||
}
|
||
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_acc_impl(ctx,
|
||
tensor->grad,
|
||
ggml_neg(ctx, tensor_grad_view),
|
||
nb1, nb2, nb3, offset, false),
|
||
zero_table, acc_table);
|
||
}
|
||
|
||
if (src1->grad) {
|
||
src1->grad =
|
||
ggml_add_or_set(ctx,
|
||
src1->grad,
|
||
ggml_reshape(ctx,
|
||
ggml_cont(ctx, tensor_grad_view),
|
||
src1->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_CPY:
|
||
{
|
||
// necessary for llama
|
||
// cpy overwrites value of src1 by src0 and returns view(src1)
|
||
// the overwriting is mathematically equivalent to:
|
||
// tensor = src0 * 1 + src1 * 0
|
||
if (src0->grad) {
|
||
// dsrc0 = dtensor * 1
|
||
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
// dsrc1 = dtensor * 0 -> noop
|
||
}
|
||
} break;
|
||
case GGML_OP_CONT:
|
||
{
|
||
// same as cpy
|
||
if (src0->grad) {
|
||
GGML_ASSERT(ggml_is_contiguous(src0->grad));
|
||
GGML_ASSERT(ggml_is_contiguous(tensor->grad));
|
||
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_RESHAPE:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx, src0->grad,
|
||
ggml_reshape(ctx,
|
||
ggml_is_contiguous(tensor->grad)
|
||
? tensor->grad
|
||
: ggml_cont(ctx, tensor->grad),
|
||
src0->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_VIEW:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
size_t offset;
|
||
|
||
memcpy(&offset, tensor->op_params, sizeof(offset));
|
||
|
||
size_t nb1 = tensor->nb[1];
|
||
size_t nb2 = tensor->nb[2];
|
||
size_t nb3 = tensor->nb[3];
|
||
|
||
if (src0->type != src0->grad->type) {
|
||
// gradient is typically F32, but src0 could be other type
|
||
size_t ng = ggml_element_size(src0->grad);
|
||
size_t n0 = ggml_element_size(src0);
|
||
GGML_ASSERT(offset % n0 == 0);
|
||
GGML_ASSERT(nb1 % n0 == 0);
|
||
GGML_ASSERT(nb2 % n0 == 0);
|
||
GGML_ASSERT(nb3 % n0 == 0);
|
||
offset = (offset / n0) * ng;
|
||
nb1 = (nb1 / n0) * ng;
|
||
nb2 = (nb2 / n0) * ng;
|
||
nb3 = (nb3 / n0) * ng;
|
||
}
|
||
|
||
src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_PERMUTE:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
int32_t * axes = (int32_t *) tensor->op_params;
|
||
int axis0 = axes[0] & 0x3;
|
||
int axis1 = axes[1] & 0x3;
|
||
int axis2 = axes[2] & 0x3;
|
||
int axis3 = axes[3] & 0x3;
|
||
int axes_backward[4] = {0,0,0,0};
|
||
axes_backward[axis0] = 0;
|
||
axes_backward[axis1] = 1;
|
||
axes_backward[axis2] = 2;
|
||
axes_backward[axis3] = 3;
|
||
src0->grad =
|
||
ggml_add_or_set(ctx, src0->grad,
|
||
ggml_permute(ctx,
|
||
tensor->grad,
|
||
axes_backward[0],
|
||
axes_backward[1],
|
||
axes_backward[2],
|
||
axes_backward[3]),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_TRANSPOSE:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx, src0->grad,
|
||
ggml_transpose(ctx, tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_GET_ROWS:
|
||
{
|
||
// necessary for llama (only for tokenizer)
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx, src0->grad,
|
||
// last ggml_get_rows_back argument src0->grad is only
|
||
// necessary to setup correct output shape
|
||
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
// noop
|
||
}
|
||
} break;
|
||
case GGML_OP_GET_ROWS_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_DIAG:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_DIAG_MASK_INF:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
const int n_past = ((int32_t *) tensor->op_params)[0];
|
||
src0->grad =
|
||
ggml_add_or_set(ctx, src0->grad,
|
||
/* ggml_diag_mask_inf_impl() shouldn't be here */
|
||
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
|
||
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_DIAG_MASK_ZERO:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
const int n_past = ((int32_t *) tensor->op_params)[0];
|
||
src0->grad =
|
||
ggml_add_or_set(ctx, src0->grad,
|
||
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_SOFT_MAX:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx, src0->grad,
|
||
ggml_soft_max_back(ctx, tensor->grad, tensor),
|
||
zero_table, acc_table);
|
||
}
|
||
GGML_ASSERT((!src1 || !src1->grad) && "backward pass for softmax mask not implemented");
|
||
} break;
|
||
case GGML_OP_SOFT_MAX_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_ROPE:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
//const int n_past = ((int32_t *) tensor->op_params)[0];
|
||
const int n_dims = ((int32_t *) tensor->op_params)[1];
|
||
const int mode = ((int32_t *) tensor->op_params)[2];
|
||
//const int n_ctx = ((int32_t *) tensor->op_params)[3];
|
||
const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
|
||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||
|
||
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
|
||
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
|
||
memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
|
||
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
|
||
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
|
||
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
|
||
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_rope_back(ctx,
|
||
tensor->grad,
|
||
src1,
|
||
src2,
|
||
n_dims,
|
||
mode,
|
||
n_ctx_orig,
|
||
freq_base,
|
||
freq_scale,
|
||
ext_factor,
|
||
attn_factor,
|
||
beta_fast,
|
||
beta_slow),
|
||
zero_table, acc_table);
|
||
}
|
||
GGML_ASSERT((!src2 || !src2->grad) && "gradients for freq factors not implemented");
|
||
} break;
|
||
case GGML_OP_ROPE_BACK:
|
||
{
|
||
if (src0->grad) {
|
||
//const int n_past = ((int32_t *) tensor->op_params)[0];
|
||
const int n_dims = ((int32_t *) tensor->op_params)[1];
|
||
const int mode = ((int32_t *) tensor->op_params)[2];
|
||
//const int n_ctx = ((int32_t *) tensor->op_params)[3];
|
||
const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
|
||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||
|
||
memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
|
||
memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
|
||
memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
|
||
memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
|
||
memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
|
||
memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
|
||
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_rope_impl(ctx,
|
||
tensor->grad,
|
||
src1,
|
||
src2,
|
||
n_dims,
|
||
mode,
|
||
n_ctx_orig,
|
||
freq_base,
|
||
freq_scale,
|
||
ext_factor,
|
||
attn_factor,
|
||
beta_fast,
|
||
beta_slow,
|
||
false),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_CLAMP:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_IM2COL:
|
||
{
|
||
if (src1->grad) {
|
||
const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
|
||
const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
|
||
const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
|
||
const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
|
||
const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
|
||
const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
|
||
const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
|
||
|
||
src1->grad = ggml_add_or_set(ctx,
|
||
src1->grad,
|
||
ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_IM2COL_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_POOL_1D:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_POOL_2D:
|
||
{
|
||
if (src0->grad) {
|
||
const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
|
||
const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
|
||
const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
|
||
const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
|
||
const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
|
||
const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
|
||
const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
|
||
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_POOL_2D_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_UPSCALE:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_PAD:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_ARANGE:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_ARGSORT:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_LEAKY_RELU:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_FLASH_ATTN_EXT:
|
||
{
|
||
GGML_ABORT("FA backward pass not adapted after rework");
|
||
struct ggml_tensor * flash_grad = NULL;
|
||
if (src0->grad || src1->grad || tensor->src[2]->grad) {
|
||
int32_t t = ggml_get_op_params_i32(tensor, 0);
|
||
GGML_ASSERT(t == 0 || t == 1);
|
||
bool masked = t != 0;
|
||
flash_grad =
|
||
ggml_flash_attn_back(ctx,
|
||
src0,
|
||
src1,
|
||
tensor->src[2],
|
||
tensor->grad,
|
||
masked);
|
||
}
|
||
|
||
const int64_t elem_q = ggml_nelements(src0);
|
||
const int64_t elem_k = ggml_nelements(src1);
|
||
const int64_t elem_v = ggml_nelements(src2);
|
||
|
||
enum ggml_type result_type = flash_grad->type;
|
||
GGML_ASSERT(ggml_blck_size(result_type) == 1);
|
||
const size_t tsize = ggml_type_size(result_type);
|
||
|
||
const size_t offs_q = 0;
|
||
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
|
||
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
|
||
|
||
if (src0->grad) {
|
||
struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
|
||
struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
grad_q,
|
||
zero_table, acc_table);
|
||
}
|
||
if (src1->grad) {
|
||
struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
|
||
struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
|
||
src1->grad = ggml_add_or_set(ctx,
|
||
src1->grad,
|
||
grad_k,
|
||
zero_table, acc_table);
|
||
}
|
||
if (src2->grad) {
|
||
struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
|
||
struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
|
||
src2->grad = ggml_add_or_set(ctx,
|
||
src2->grad,
|
||
grad_v,
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_OP_FLASH_ATTN_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // not supported
|
||
}
|
||
case GGML_OP_SSM_CONV:
|
||
case GGML_OP_SSM_SCAN:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_OP_WIN_PART:
|
||
case GGML_OP_WIN_UNPART:
|
||
case GGML_OP_UNARY:
|
||
{
|
||
switch (ggml_get_unary_op(tensor)) {
|
||
case GGML_UNARY_OP_ABS:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad =
|
||
ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_mul(ctx,
|
||
ggml_sgn(ctx, src0),
|
||
tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_UNARY_OP_SGN:
|
||
{
|
||
if (src0->grad) {
|
||
// noop
|
||
}
|
||
} break;
|
||
case GGML_UNARY_OP_NEG:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_UNARY_OP_STEP:
|
||
{
|
||
if (src0->grad) {
|
||
// noop
|
||
}
|
||
} break;
|
||
case GGML_UNARY_OP_TANH:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_UNARY_OP_ELU:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_UNARY_OP_RELU:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_mul(ctx,
|
||
ggml_step(ctx, src0),
|
||
tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_UNARY_OP_SIGMOID:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_UNARY_OP_GELU:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_UNARY_OP_GELU_QUICK:
|
||
{
|
||
GGML_ABORT("fatal error"); // TODO: not implemented
|
||
}
|
||
case GGML_UNARY_OP_SILU:
|
||
{
|
||
// necessary for llama
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_silu_back(ctx, src0, tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
case GGML_UNARY_OP_EXP:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_mul(ctx, tensor, tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
} break;
|
||
default:
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
} break;
|
||
case GGML_OP_GET_REL_POS:
|
||
case GGML_OP_ADD_REL_POS:
|
||
case GGML_OP_RWKV_WKV6:
|
||
case GGML_OP_MAP_UNARY:
|
||
case GGML_OP_MAP_BINARY:
|
||
case GGML_OP_MAP_CUSTOM1_F32:
|
||
case GGML_OP_MAP_CUSTOM2_F32:
|
||
case GGML_OP_MAP_CUSTOM3_F32:
|
||
case GGML_OP_MAP_CUSTOM1:
|
||
case GGML_OP_MAP_CUSTOM2:
|
||
case GGML_OP_MAP_CUSTOM3:
|
||
{
|
||
GGML_ABORT("fatal error"); // not supported
|
||
}
|
||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||
{
|
||
if (src0->grad) {
|
||
src0->grad = ggml_add_or_set(ctx,
|
||
src0->grad,
|
||
ggml_cross_entropy_loss_back(ctx,
|
||
src0,
|
||
src1,
|
||
tensor->grad),
|
||
zero_table, acc_table);
|
||
}
|
||
GGML_ASSERT(!src1->grad && "backward pass for labels not implemented");
|
||
} break;
|
||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||
{
|
||
GGML_ABORT("fatal error"); // not supported
|
||
}
|
||
case GGML_OP_OPT_STEP_ADAMW:
|
||
{
|
||
GGML_ABORT("fatal error"); // not supported
|
||
}
|
||
case GGML_OP_NONE:
|
||
{
|
||
// nop
|
||
} break;
|
||
case GGML_OP_COUNT:
|
||
{
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < GGML_MAX_SRC; ++i) {
|
||
if (tensor->src[i] && tensor->src[i]->grad) {
|
||
GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
|
||
}
|
||
}
|
||
}
|
||
|
||
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
|
||
if (node->grad == NULL) {
|
||
// this usually happens when we generate intermediate nodes from constants in the backward pass
|
||
// it can also happen during forward pass, if the user performs computations with constants
|
||
if (node->op != GGML_OP_NONE) {
|
||
//GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
|
||
}
|
||
}
|
||
|
||
// check if already visited
|
||
if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
|
||
return;
|
||
}
|
||
|
||
for (int i = 0; i < GGML_MAX_SRC; ++i) {
|
||
const int k =
|
||
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
|
||
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
|
||
/* unknown order, just fall back to using i*/ i;
|
||
if (node->src[k]) {
|
||
ggml_visit_parents(cgraph, node->src[k]);
|
||
}
|
||
}
|
||
|
||
if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
|
||
// reached a leaf node, not part of the gradient graph (e.g. a constant)
|
||
GGML_ASSERT(cgraph->n_leafs < cgraph->size);
|
||
|
||
if (strlen(node->name) == 0) {
|
||
ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
|
||
}
|
||
|
||
cgraph->leafs[cgraph->n_leafs] = node;
|
||
cgraph->n_leafs++;
|
||
} else {
|
||
GGML_ASSERT(cgraph->n_nodes < cgraph->size);
|
||
|
||
if (strlen(node->name) == 0) {
|
||
ggml_format_name(node, "node_%d", cgraph->n_nodes);
|
||
}
|
||
|
||
cgraph->nodes[cgraph->n_nodes] = node;
|
||
cgraph->n_nodes++;
|
||
}
|
||
}
|
||
|
||
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
|
||
if (!expand) {
|
||
// TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
|
||
ggml_graph_clear(cgraph);
|
||
}
|
||
|
||
const int n0 = cgraph->n_nodes;
|
||
|
||
ggml_visit_parents(cgraph, tensor);
|
||
|
||
const int n_new = cgraph->n_nodes - n0;
|
||
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
|
||
|
||
if (n_new > 0) {
|
||
// the last added node should always be starting point
|
||
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
|
||
}
|
||
}
|
||
|
||
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
|
||
ggml_build_forward_impl(cgraph, tensor, true);
|
||
}
|
||
|
||
void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate) {
|
||
GGML_ASSERT(gf->n_nodes > 0);
|
||
GGML_ASSERT(gf->grads);
|
||
|
||
for (int i = 0; i < gf->n_nodes; ++i) {
|
||
struct ggml_tensor * node = gf->nodes[i];
|
||
|
||
if (node->type == GGML_TYPE_I32) {
|
||
continue;
|
||
}
|
||
|
||
bool needs_grad = node->flags & GGML_TENSOR_FLAG_PARAM;
|
||
bool ignore_src[GGML_MAX_SRC] = {false};
|
||
switch (node->op) {
|
||
// gradients in node->src[0] for one reason or another have no effect on output gradients
|
||
case GGML_OP_IM2COL: // only used for its shape
|
||
case GGML_OP_IM2COL_BACK: // same as IM2COL
|
||
ignore_src[0] = true;
|
||
break;
|
||
case GGML_OP_UNARY: {
|
||
const enum ggml_unary_op uop = ggml_get_unary_op(node);
|
||
// SGN and STEP unary ops are piecewise constant
|
||
if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
|
||
ignore_src[0] = true;
|
||
}
|
||
} break;
|
||
|
||
// gradients in node->src[1] for one reason or another have no effect on output gradients
|
||
case GGML_OP_CPY: // gradients in CPY target are irrelevant
|
||
case GGML_OP_GET_ROWS: // row indices not differentiable
|
||
case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
|
||
case GGML_OP_ROPE: // positions not differentiable
|
||
ignore_src[1] = true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
for (int j = 0; j < GGML_MAX_SRC; ++j) {
|
||
if (!node->src[j] || !node->src[j]->grad || ignore_src[j]) {
|
||
continue;
|
||
}
|
||
GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
|
||
needs_grad = true;
|
||
break;
|
||
}
|
||
if (!needs_grad) {
|
||
continue;
|
||
}
|
||
|
||
// inplace operations are currently not supported
|
||
GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
|
||
node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
|
||
|
||
// create a new tensor with the same type and shape as the node and set it as grad
|
||
node->grad = ggml_dup_tensor(ctx, node);
|
||
}
|
||
|
||
// keep tables of original gradients for replacement/accumulation logic
|
||
struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
|
||
struct ggml_hash_set acc_table = ggml_hash_set_new(gf->size);
|
||
for (int i = 0; i < gf->n_nodes; i++) {
|
||
struct ggml_tensor * node = gf->nodes[i];
|
||
|
||
if (node->grad) {
|
||
{
|
||
const size_t insert_result = ggml_hash_insert(&zero_table, node->grad);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
|
||
}
|
||
|
||
// only gradients of trainable parameters should be accumulated
|
||
if (accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
|
||
const size_t insert_result = ggml_hash_insert(&acc_table, node->grad);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
|
||
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = gf->n_nodes - 1; i >= 0; i--) {
|
||
struct ggml_tensor * node = gf->nodes[i];
|
||
|
||
// inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
|
||
// use allocator to automatically make inplace operations
|
||
if (node->grad) {
|
||
ggml_compute_backward(ctx, node, &zero_table, &acc_table);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < gf->n_nodes; i++) {
|
||
struct ggml_tensor * node = gf->nodes[i];
|
||
|
||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
|
||
ggml_build_forward_expand(gb, node->grad);
|
||
}
|
||
}
|
||
|
||
ggml_hash_set_free(&zero_table);
|
||
ggml_hash_set_free(&acc_table);
|
||
}
|
||
|
||
void ggml_build_opt_adamw(
|
||
struct ggml_context * ctx,
|
||
struct ggml_cgraph * gf,
|
||
struct ggml_cgraph * gb,
|
||
float alpha,
|
||
float beta1,
|
||
float beta2,
|
||
float eps,
|
||
float wd) {
|
||
for (int i = 0; i < gf->n_nodes; i++) {
|
||
struct ggml_tensor * node = gf->nodes[i];
|
||
|
||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
|
||
struct ggml_tensor * opt_step = ggml_opt_step_adamw(ctx, node, node->grad, alpha, beta1, beta2, eps, wd);
|
||
ggml_build_forward_expand(gb, opt_step);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
|
||
void * ptr = *p;
|
||
ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
|
||
*p = (void *) ((char *) ptr + size);
|
||
return ptr;
|
||
}
|
||
|
||
static size_t ggml_graph_nbytes(size_t size, bool grads) {
|
||
size_t hash_size = ggml_hash_size(size * 2);
|
||
void * p = 0;
|
||
incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
|
||
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
|
||
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
|
||
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
|
||
if (grads) {
|
||
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
|
||
}
|
||
incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
|
||
|
||
size_t nbytes = (size_t) p;
|
||
return nbytes;
|
||
}
|
||
|
||
size_t ggml_graph_overhead_custom(size_t size, bool grads) {
|
||
return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
|
||
}
|
||
|
||
size_t ggml_graph_overhead(void) {
|
||
return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
|
||
}
|
||
|
||
struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
|
||
const size_t obj_size = ggml_graph_nbytes(size, grads);
|
||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
|
||
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
|
||
|
||
// the size of the hash table is doubled since it needs to hold both nodes and leafs
|
||
size_t hash_size = ggml_hash_size(size * 2);
|
||
|
||
void * p = cgraph + 1;
|
||
|
||
struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
|
||
struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
|
||
struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
|
||
struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
|
||
ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
|
||
|
||
// check that we allocated the correct amount of memory
|
||
assert(obj_size == (size_t)((char *)p - (char *)cgraph));
|
||
|
||
*cgraph = (struct ggml_cgraph) {
|
||
/*.size =*/ size,
|
||
/*.n_nodes =*/ 0,
|
||
/*.n_leafs =*/ 0,
|
||
/*.nodes =*/ nodes_ptr,
|
||
/*.grads =*/ grads_ptr,
|
||
/*.leafs =*/ leafs_ptr,
|
||
/*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
|
||
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
|
||
};
|
||
|
||
ggml_hash_set_reset(&cgraph->visited_hash_set);
|
||
|
||
return cgraph;
|
||
}
|
||
|
||
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
|
||
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
|
||
}
|
||
|
||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
|
||
struct ggml_cgraph cgraph = {
|
||
/*.size =*/ 0,
|
||
/*.n_nodes =*/ i1 - i0,
|
||
/*.n_leafs =*/ 0,
|
||
/*.nodes =*/ cgraph0->nodes + i0,
|
||
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
|
||
/*.leafs =*/ NULL,
|
||
/*.hash_table =*/ { 0, NULL, NULL },
|
||
/*.order =*/ cgraph0->order,
|
||
};
|
||
|
||
return cgraph;
|
||
}
|
||
|
||
void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
|
||
GGML_ASSERT(dst->size >= src->n_leafs);
|
||
GGML_ASSERT(dst->size >= src->n_nodes);
|
||
GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
|
||
|
||
dst->n_leafs = src->n_leafs;
|
||
dst->n_nodes = src->n_nodes;
|
||
dst->order = src->order;
|
||
|
||
for (int i = 0; i < src->n_leafs; ++i) {
|
||
dst->leafs[i] = src->leafs[i];
|
||
}
|
||
|
||
for (int i = 0; i < src->n_nodes; ++i) {
|
||
dst->nodes[i] = src->nodes[i];
|
||
}
|
||
|
||
if (src->grads) {
|
||
GGML_ASSERT(dst->grads != NULL);
|
||
for (int i = 0; i < src->n_nodes; ++i) {
|
||
dst->grads[i] = src->grads[i];
|
||
}
|
||
}
|
||
|
||
for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
|
||
// copy all hashset keys (tensors) that are in use
|
||
if (ggml_bitset_get(src->visited_hash_set.used, i)) {
|
||
ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
|
||
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
|
||
ggml_graph_cpy(cgraph, result);
|
||
return result;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
|
||
if (ggml_is_empty(tensor)) {
|
||
return tensor;
|
||
}
|
||
if (tensor->buffer) {
|
||
ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
|
||
} else {
|
||
GGML_ASSERT(tensor->data);
|
||
memset(tensor->data, 0, ggml_nbytes(tensor));
|
||
}
|
||
return tensor;
|
||
}
|
||
|
||
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
|
||
GGML_ASSERT(cgraph->grads != NULL);
|
||
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
struct ggml_tensor * node = cgraph->nodes[i];
|
||
|
||
// initial gradients of loss should be 1, 0 otherwise
|
||
if (node->grad) {
|
||
if (node->flags & GGML_TENSOR_FLAG_LOSS) {
|
||
GGML_ASSERT(node->grad->buffer);
|
||
GGML_ASSERT(node->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(ggml_is_scalar(node));
|
||
|
||
const float onef = 1.0f;
|
||
ggml_backend_tensor_set(node->grad, &onef, 0, ggml_nbytes(node->grad));
|
||
} else {
|
||
ggml_set_zero(node->grad);
|
||
}
|
||
}
|
||
|
||
GGML_ASSERT(node);
|
||
if (node->op == GGML_OP_OPT_STEP_ADAMW) {
|
||
// set iteration to 1 and clear momenta
|
||
ggml_set_op_params_i32(node, 0, 1);
|
||
ggml_set_zero(node->src[2]);
|
||
ggml_set_zero(node->src[3]);
|
||
}
|
||
}
|
||
}
|
||
|
||
void ggml_graph_clear(struct ggml_cgraph * cgraph) {
|
||
cgraph->n_leafs = 0;
|
||
cgraph->n_nodes = 0;
|
||
ggml_hash_set_reset(&cgraph->visited_hash_set);
|
||
}
|
||
|
||
int ggml_graph_size(struct ggml_cgraph * cgraph) {
|
||
return cgraph->size;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
|
||
if (i < 0) {
|
||
GGML_ASSERT(cgraph->n_nodes + i >= 0);
|
||
return cgraph->nodes[cgraph->n_nodes + i];
|
||
}
|
||
|
||
GGML_ASSERT(i < cgraph->n_nodes);
|
||
return cgraph->nodes[i];
|
||
}
|
||
|
||
struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
|
||
return cgraph->nodes;
|
||
}
|
||
|
||
int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
|
||
return cgraph->n_nodes;
|
||
}
|
||
|
||
void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
|
||
GGML_ASSERT(cgraph->size > cgraph->n_nodes);
|
||
cgraph->nodes[cgraph->n_nodes] = tensor;
|
||
cgraph->n_nodes++;
|
||
}
|
||
|
||
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
|
||
for (int i = 0; i < cgraph->n_leafs; i++) {
|
||
struct ggml_tensor * leaf = cgraph->leafs[i];
|
||
|
||
if (strcmp(leaf->name, name) == 0) {
|
||
return leaf;
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
struct ggml_tensor * node = cgraph->nodes[i];
|
||
|
||
if (strcmp(node->name, name) == 0) {
|
||
return node;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
||
GGML_LOG_INFO("=== GRAPH ===\n");
|
||
|
||
GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
struct ggml_tensor * node = cgraph->nodes[i];
|
||
|
||
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
|
||
i,
|
||
node->ne[0], node->ne[1], node->ne[2],
|
||
ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
|
||
}
|
||
|
||
GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
|
||
for (int i = 0; i < cgraph->n_leafs; i++) {
|
||
struct ggml_tensor * node = cgraph->leafs[i];
|
||
|
||
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
|
||
i,
|
||
node->ne[0], node->ne[1],
|
||
ggml_op_name(node->op),
|
||
ggml_get_name(node));
|
||
}
|
||
|
||
GGML_LOG_INFO("========================================\n");
|
||
}
|
||
|
||
// check if node is part of the graph
|
||
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
|
||
if (cgraph == NULL) {
|
||
return true;
|
||
}
|
||
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
if (cgraph->nodes[i] == node) {
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
struct ggml_tensor * parent = cgraph->nodes[i];
|
||
|
||
if (parent->grad == node) {
|
||
return parent;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
|
||
struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
|
||
struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
|
||
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
|
||
gparent0 ? (void *) gparent0 : (void *) parent,
|
||
gparent0 ? "g" : "x",
|
||
gparent ? (void *) gparent : (void *) node,
|
||
gparent ? "g" : "x",
|
||
gparent ? "empty" : "vee",
|
||
gparent ? "dashed" : "solid",
|
||
label);
|
||
}
|
||
|
||
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
|
||
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
|
||
(void *) parent, "x",
|
||
(void *) node, "x",
|
||
label);
|
||
}
|
||
|
||
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
|
||
char color[16];
|
||
|
||
FILE * fp = ggml_fopen(filename, "w");
|
||
GGML_ASSERT(fp);
|
||
|
||
fprintf(fp, "digraph G {\n");
|
||
fprintf(fp, " newrank = true;\n");
|
||
fprintf(fp, " rankdir = TB;\n");
|
||
|
||
for (int i = 0; i < gb->n_nodes; i++) {
|
||
struct ggml_tensor * node = gb->nodes[i];
|
||
|
||
if (ggml_graph_get_parent(gb, node) != NULL) {
|
||
continue;
|
||
}
|
||
|
||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||
snprintf(color, sizeof(color), "yellow");
|
||
} else if (node->grad) {
|
||
if (ggml_graph_find(gf, node)) {
|
||
snprintf(color, sizeof(color), "green");
|
||
} else {
|
||
snprintf(color, sizeof(color), "lightblue");
|
||
}
|
||
} else {
|
||
snprintf(color, sizeof(color), "white");
|
||
}
|
||
|
||
fprintf(fp, " \"%p\" [ "
|
||
"style = filled; fillcolor = %s; shape = record; "
|
||
"label=\"",
|
||
(void *) node, color);
|
||
|
||
if (strlen(node->name) > 0) {
|
||
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
|
||
} else {
|
||
fprintf(fp, "(%s)|", ggml_type_name(node->type));
|
||
}
|
||
|
||
if (ggml_is_matrix(node)) {
|
||
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
|
||
} else {
|
||
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
|
||
}
|
||
|
||
if (node->grad) {
|
||
fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
|
||
} else {
|
||
fprintf(fp, "\"; ]\n");
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < gb->n_leafs; i++) {
|
||
struct ggml_tensor * node = gb->leafs[i];
|
||
|
||
snprintf(color, sizeof(color), "pink");
|
||
|
||
fprintf(fp, " \"%p\" [ "
|
||
"style = filled; fillcolor = %s; shape = record; "
|
||
"label=\"<x>",
|
||
(void *) node, color);
|
||
|
||
if (strlen(node->name) > 0) {
|
||
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
|
||
} else {
|
||
fprintf(fp, "(%s)|", ggml_type_name(node->type));
|
||
}
|
||
|
||
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
|
||
if (ggml_nelements(node) < 5 && node->data != NULL) {
|
||
fprintf(fp, " | (");
|
||
for (int j = 0; j < ggml_nelements(node); j++) {
|
||
// FIXME: use ggml-backend to obtain the tensor data
|
||
//if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
|
||
// fprintf(fp, "%d", ggml_get_i32_1d(node, j));
|
||
//}
|
||
//else if (node->type == GGML_TYPE_F32 ||
|
||
// node->type == GGML_TYPE_F16 ||
|
||
// node->type == GGML_TYPE_BF16) {
|
||
// fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
|
||
//}
|
||
//else
|
||
{
|
||
fprintf(fp, "#");
|
||
}
|
||
if (j < ggml_nelements(node) - 1) {
|
||
fprintf(fp, ", ");
|
||
}
|
||
}
|
||
fprintf(fp, ")");
|
||
}
|
||
fprintf(fp, "\"; ]\n");
|
||
}
|
||
|
||
for (int i = 0; i < gb->n_nodes; i++) {
|
||
struct ggml_tensor * node = gb->nodes[i];
|
||
|
||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||
if (node->src[j]) {
|
||
char label[16];
|
||
snprintf(label, sizeof(label), "src %d", j);
|
||
ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < gb->n_leafs; i++) {
|
||
struct ggml_tensor * node = gb->leafs[i];
|
||
|
||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||
if (node->src[j]) {
|
||
char label[16];
|
||
snprintf(label, sizeof(label), "src %d", j);
|
||
ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
|
||
}
|
||
}
|
||
}
|
||
|
||
fprintf(fp, "}\n");
|
||
|
||
fclose(fp);
|
||
|
||
GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void ggml_set_input(struct ggml_tensor * tensor) {
|
||
tensor->flags |= GGML_TENSOR_FLAG_INPUT;
|
||
}
|
||
|
||
void ggml_set_output(struct ggml_tensor * tensor) {
|
||
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
|
||
}
|
||
|
||
void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
|
||
GGML_UNUSED(ctx); // TODO: remove this parameter
|
||
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
|
||
}
|
||
|
||
void ggml_set_loss(struct ggml_tensor * tensor) {
|
||
GGML_ASSERT(ggml_is_scalar(tensor));
|
||
GGML_ASSERT(tensor->type == GGML_TYPE_F32);
|
||
tensor->flags |= GGML_TENSOR_FLAG_LOSS;
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void ggml_quantize_init(enum ggml_type type) {
|
||
ggml_critical_section_start();
|
||
|
||
switch (type) {
|
||
case GGML_TYPE_IQ2_XXS:
|
||
case GGML_TYPE_IQ2_XS:
|
||
case GGML_TYPE_IQ2_S:
|
||
case GGML_TYPE_IQ1_S:
|
||
case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
|
||
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
|
||
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
|
||
default: // nothing
|
||
break;
|
||
}
|
||
|
||
ggml_critical_section_end();
|
||
}
|
||
|
||
void ggml_quantize_free(void) {
|
||
ggml_critical_section_start();
|
||
|
||
iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
|
||
iq2xs_free_impl(GGML_TYPE_IQ2_XS);
|
||
iq2xs_free_impl(GGML_TYPE_IQ1_S);
|
||
iq3xs_free_impl(256);
|
||
|
||
ggml_critical_section_end();
|
||
}
|
||
|
||
bool ggml_quantize_requires_imatrix(enum ggml_type type) {
|
||
return
|
||
type == GGML_TYPE_IQ2_XXS ||
|
||
type == GGML_TYPE_IQ2_XS ||
|
||
type == GGML_TYPE_IQ1_S;// ||
|
||
//type == GGML_TYPE_IQ1_M;
|
||
}
|
||
|
||
size_t ggml_quantize_chunk(
|
||
enum ggml_type type,
|
||
const float * src,
|
||
void * dst,
|
||
int64_t start,
|
||
int64_t nrows,
|
||
int64_t n_per_row,
|
||
const float * imatrix) {
|
||
const int64_t n = (int64_t) nrows * n_per_row;
|
||
|
||
if (ggml_quantize_requires_imatrix(type)) {
|
||
GGML_ASSERT(imatrix != NULL);
|
||
}
|
||
|
||
GGML_ASSERT(start % type_traits[type].blck_size == 0);
|
||
GGML_ASSERT(start % n_per_row == 0);
|
||
|
||
ggml_quantize_init(type); // this is noop if already initialized
|
||
|
||
const size_t start_row = start / n_per_row;
|
||
const size_t row_size = ggml_row_size(type, n_per_row);
|
||
|
||
size_t result = 0;
|
||
|
||
switch (type) {
|
||
case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||
case GGML_TYPE_F16:
|
||
{
|
||
size_t elemsize = sizeof(ggml_fp16_t);
|
||
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
|
||
result = n * elemsize;
|
||
} break;
|
||
case GGML_TYPE_BF16:
|
||
{
|
||
size_t elemsize = sizeof(ggml_bf16_t);
|
||
ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
|
||
result = n * elemsize;
|
||
} break;
|
||
case GGML_TYPE_F32:
|
||
{
|
||
size_t elemsize = sizeof(float);
|
||
result = n * elemsize;
|
||
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
|
||
} break;
|
||
default:
|
||
assert(false);
|
||
}
|
||
|
||
GGML_ASSERT(result == nrows * row_size);
|
||
|
||
return result;
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
struct gguf_str {
|
||
uint64_t n; // GGUFv2
|
||
char * data;
|
||
};
|
||
|
||
static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
|
||
[GGUF_TYPE_UINT8] = sizeof(uint8_t),
|
||
[GGUF_TYPE_INT8] = sizeof(int8_t),
|
||
[GGUF_TYPE_UINT16] = sizeof(uint16_t),
|
||
[GGUF_TYPE_INT16] = sizeof(int16_t),
|
||
[GGUF_TYPE_UINT32] = sizeof(uint32_t),
|
||
[GGUF_TYPE_INT32] = sizeof(int32_t),
|
||
[GGUF_TYPE_FLOAT32] = sizeof(float),
|
||
[GGUF_TYPE_BOOL] = sizeof(bool),
|
||
[GGUF_TYPE_STRING] = sizeof(struct gguf_str),
|
||
[GGUF_TYPE_UINT64] = sizeof(uint64_t),
|
||
[GGUF_TYPE_INT64] = sizeof(int64_t),
|
||
[GGUF_TYPE_FLOAT64] = sizeof(double),
|
||
[GGUF_TYPE_ARRAY] = 0, // undefined
|
||
};
|
||
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
|
||
|
||
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
|
||
[GGUF_TYPE_UINT8] = "u8",
|
||
[GGUF_TYPE_INT8] = "i8",
|
||
[GGUF_TYPE_UINT16] = "u16",
|
||
[GGUF_TYPE_INT16] = "i16",
|
||
[GGUF_TYPE_UINT32] = "u32",
|
||
[GGUF_TYPE_INT32] = "i32",
|
||
[GGUF_TYPE_FLOAT32] = "f32",
|
||
[GGUF_TYPE_BOOL] = "bool",
|
||
[GGUF_TYPE_STRING] = "str",
|
||
[GGUF_TYPE_ARRAY] = "arr",
|
||
[GGUF_TYPE_UINT64] = "u64",
|
||
[GGUF_TYPE_INT64] = "i64",
|
||
[GGUF_TYPE_FLOAT64] = "f64",
|
||
};
|
||
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
|
||
|
||
union gguf_value {
|
||
uint8_t uint8;
|
||
int8_t int8;
|
||
uint16_t uint16;
|
||
int16_t int16;
|
||
uint32_t uint32;
|
||
int32_t int32;
|
||
float float32;
|
||
uint64_t uint64;
|
||
int64_t int64;
|
||
double float64;
|
||
bool bool_;
|
||
|
||
struct gguf_str str;
|
||
|
||
struct {
|
||
enum gguf_type type;
|
||
|
||
uint64_t n; // GGUFv2
|
||
void * data;
|
||
} arr;
|
||
};
|
||
|
||
struct gguf_kv {
|
||
struct gguf_str key;
|
||
|
||
enum gguf_type type;
|
||
union gguf_value value;
|
||
};
|
||
|
||
struct gguf_header {
|
||
char magic[4];
|
||
|
||
uint32_t version;
|
||
uint64_t n_tensors; // GGUFv2
|
||
uint64_t n_kv; // GGUFv2
|
||
};
|
||
|
||
struct gguf_tensor_info {
|
||
struct gguf_str name;
|
||
|
||
uint32_t n_dims;
|
||
uint64_t ne[GGML_MAX_DIMS];
|
||
|
||
enum ggml_type type;
|
||
|
||
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
|
||
|
||
// for writing API
|
||
const void * data;
|
||
size_t size;
|
||
};
|
||
|
||
struct gguf_context {
|
||
struct gguf_header header;
|
||
|
||
struct gguf_kv * kv;
|
||
struct gguf_tensor_info * infos;
|
||
|
||
size_t alignment;
|
||
size_t offset; // offset of `data` from beginning of file
|
||
size_t size; // size of `data` in bytes
|
||
|
||
//uint8_t * padding;
|
||
void * data;
|
||
};
|
||
|
||
static size_t gguf_type_size(enum gguf_type type) {
|
||
GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
|
||
return GGUF_TYPE_SIZE[type];
|
||
}
|
||
|
||
static bool gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
|
||
if (info->n_dims > GGML_MAX_DIMS) {
|
||
fprintf(stderr, "%s: invalid number of dimensions (%" PRIu32 ")\n", __func__, info->n_dims);
|
||
return false;
|
||
}
|
||
|
||
if (info->type < 0 || info->type >= GGML_TYPE_COUNT) {
|
||
fprintf(stderr, "%s: invalid type (%d)\n", __func__, info->type);
|
||
return false;
|
||
}
|
||
|
||
if (strlen(info->name.data) >= GGML_MAX_NAME) {
|
||
fprintf(stderr, "%s: tensor '%s' name is too long\n", __func__, info->name.data);
|
||
return false;
|
||
}
|
||
|
||
for (uint32_t i = 0; i < info->n_dims; ++i) {
|
||
if (info->ne[i] <= 0) {
|
||
fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[i]);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// prevent overflow for total number of elements
|
||
if (INT64_MAX/info->ne[1] <= info->ne[0]) {
|
||
fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[1]);
|
||
return false;
|
||
}
|
||
|
||
if (INT64_MAX/info->ne[2] <= info->ne[0]*info->ne[1]) {
|
||
fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[2]);
|
||
return false;
|
||
}
|
||
|
||
if (INT64_MAX/info->ne[3] <= info->ne[0]*info->ne[1]*info->ne[2]) {
|
||
fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[3]);
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
|
||
const size_t n = fread(dst, 1, size, file);
|
||
*offset += n;
|
||
return n == size;
|
||
}
|
||
|
||
static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
|
||
p->n = 0;
|
||
p->data = NULL;
|
||
|
||
bool ok = true;
|
||
|
||
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
|
||
|
||
// early exit if string length is invalid, prevents from integer overflow
|
||
if (p->n == SIZE_MAX) {
|
||
fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
|
||
return false;
|
||
}
|
||
|
||
p->data = calloc(p->n + 1, 1);
|
||
if (!p->data) {
|
||
fprintf(stderr, "%s: failed to allocate memory for string of length %" PRIu64 "\n", __func__, p->n);
|
||
return false;
|
||
}
|
||
|
||
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
|
||
|
||
return ok;
|
||
}
|
||
|
||
static void gguf_free_kv(struct gguf_kv * kv) {
|
||
if (kv->key.data) {
|
||
GGML_FREE(kv->key.data);
|
||
}
|
||
|
||
if (kv->type == GGUF_TYPE_STRING) {
|
||
if (kv->value.str.data) {
|
||
GGML_FREE(kv->value.str.data);
|
||
}
|
||
}
|
||
|
||
if (kv->type == GGUF_TYPE_ARRAY) {
|
||
if (kv->value.arr.data) {
|
||
if (kv->value.arr.type == GGUF_TYPE_STRING) {
|
||
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
|
||
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
|
||
if (str->data) {
|
||
GGML_FREE(str->data);
|
||
}
|
||
}
|
||
}
|
||
GGML_FREE(kv->value.arr.data);
|
||
}
|
||
}
|
||
}
|
||
|
||
struct gguf_context * gguf_init_empty(void) {
|
||
struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
|
||
if (!ctx) {
|
||
fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
|
||
return NULL;
|
||
}
|
||
|
||
memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
|
||
ctx->header.version = GGUF_VERSION;
|
||
ctx->header.n_tensors = 0;
|
||
ctx->header.n_kv = 0;
|
||
|
||
ctx->kv = NULL;
|
||
ctx->infos = NULL;
|
||
|
||
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
|
||
ctx->offset = 0;
|
||
ctx->size = 0;
|
||
|
||
ctx->data = NULL;
|
||
|
||
return ctx;
|
||
}
|
||
|
||
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
|
||
FILE * file = ggml_fopen(fname, "rb");
|
||
if (!file) {
|
||
fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
|
||
return NULL;
|
||
}
|
||
|
||
// offset from start of file
|
||
size_t offset = 0;
|
||
|
||
char magic[4];
|
||
|
||
// check the magic before making allocations
|
||
{
|
||
gguf_fread_el(file, &magic, sizeof(magic), &offset);
|
||
|
||
for (uint32_t i = 0; i < sizeof(magic); i++) {
|
||
if (magic[i] != GGUF_MAGIC[i]) {
|
||
fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
|
||
fclose(file);
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool ok = true;
|
||
|
||
struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
|
||
if (!ctx) {
|
||
fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
|
||
fclose(file);
|
||
return NULL;
|
||
}
|
||
|
||
// read the header
|
||
{
|
||
strncpy(ctx->header.magic, magic, 4);
|
||
|
||
ctx->kv = NULL;
|
||
ctx->infos = NULL;
|
||
ctx->data = NULL;
|
||
|
||
ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
|
||
ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
|
||
ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
|
||
|
||
if (ctx->header.version == 1) {
|
||
fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
// sanity-checks to prevent from integer/buffer overflows
|
||
|
||
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
|
||
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
|
||
ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
|
||
|
||
if (!ok) {
|
||
fprintf(stderr, "%s: failed to read header\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
// read the kv pairs
|
||
{
|
||
const uint64_t n_kv = ctx->header.n_kv;
|
||
|
||
ctx->kv = calloc(n_kv, sizeof(struct gguf_kv));
|
||
if (!ctx->kv) {
|
||
fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
for (uint64_t i = 0; i < n_kv; ++i) {
|
||
struct gguf_kv * kv = &ctx->kv[i];
|
||
|
||
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
|
||
|
||
ok = ok && gguf_fread_str(file, &kv->key, &offset);
|
||
ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
|
||
|
||
//fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
|
||
|
||
switch (kv->type) {
|
||
case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
|
||
case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
|
||
case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
|
||
case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
|
||
case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
|
||
case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
|
||
case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
|
||
case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
|
||
case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
|
||
case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
|
||
case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
|
||
case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
|
||
case GGUF_TYPE_ARRAY:
|
||
{
|
||
ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
|
||
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
|
||
|
||
switch (kv->value.arr.type) {
|
||
case GGUF_TYPE_UINT8:
|
||
case GGUF_TYPE_INT8:
|
||
case GGUF_TYPE_UINT16:
|
||
case GGUF_TYPE_INT16:
|
||
case GGUF_TYPE_UINT32:
|
||
case GGUF_TYPE_INT32:
|
||
case GGUF_TYPE_FLOAT32:
|
||
case GGUF_TYPE_UINT64:
|
||
case GGUF_TYPE_INT64:
|
||
case GGUF_TYPE_FLOAT64:
|
||
case GGUF_TYPE_BOOL:
|
||
{
|
||
// prevent from integer overflow in the malloc below
|
||
if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
|
||
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
kv->value.arr.data = calloc(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
|
||
if (!kv->value.arr.data) {
|
||
fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
|
||
} break;
|
||
case GGUF_TYPE_STRING:
|
||
{
|
||
// prevent from integer overflow in the malloc below
|
||
if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
|
||
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
kv->value.arr.data = calloc(kv->value.arr.n, sizeof(struct gguf_str));
|
||
if (!kv->value.arr.data) {
|
||
fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
|
||
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
|
||
}
|
||
} break;
|
||
case GGUF_TYPE_ARRAY:
|
||
default:
|
||
{
|
||
fprintf(stderr, "%s: invalid array type %d\n", __func__, kv->value.arr.type);
|
||
ok = false;
|
||
} break;
|
||
}
|
||
} break;
|
||
default:
|
||
{
|
||
fprintf(stderr, "%s: invalid type %d\n", __func__, kv->type);
|
||
ok = false;
|
||
} break;
|
||
}
|
||
|
||
if (!ok) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!ok) {
|
||
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
// read the tensor infos
|
||
if (ctx->header.n_tensors > 0) {
|
||
ctx->infos = calloc(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
|
||
if (!ctx->infos) {
|
||
fprintf(stderr, "%s: failed to allocate memory for tensor infos\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||
|
||
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
||
info->ne[j] = 1;
|
||
}
|
||
|
||
ok = ok && gguf_fread_str(file, &info->name, &offset);
|
||
ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
|
||
|
||
ok = ok && (info->n_dims <= GGML_MAX_DIMS);
|
||
|
||
for (uint32_t j = 0; j < info->n_dims; ++j) {
|
||
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
|
||
}
|
||
|
||
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
|
||
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
|
||
|
||
ok = ok && gguf_tensor_info_sanitize(info);
|
||
|
||
// make sure there is no duplicated tensor names
|
||
for (uint64_t j = 0; j < i && ok; ++j) {
|
||
if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
|
||
fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
|
||
ok = false;
|
||
}
|
||
}
|
||
|
||
if (!ok) {
|
||
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
|
||
|
||
int alignment_idx = gguf_find_key(ctx, "general.alignment");
|
||
if (alignment_idx != -1) {
|
||
ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
|
||
}
|
||
|
||
// we require the data section to be aligned, so take into account any padding
|
||
{
|
||
const size_t offset_pad = offset % ctx->alignment;
|
||
|
||
if (offset_pad != 0) {
|
||
offset += ctx->alignment - offset_pad;
|
||
fseek(file, offset, SEEK_SET);
|
||
}
|
||
}
|
||
|
||
// store the current file offset - this is where the data section starts
|
||
ctx->offset = offset;
|
||
|
||
// compute the total size of the data section, taking into account the alignment
|
||
{
|
||
ctx->size = 0;
|
||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||
|
||
const int64_t ne =
|
||
(int64_t) info->ne[0] *
|
||
(int64_t) info->ne[1] *
|
||
(int64_t) info->ne[2] *
|
||
(int64_t) info->ne[3];
|
||
|
||
if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
|
||
fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
|
||
__func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
const size_t size_cur = ggml_row_size(info->type, ne);
|
||
|
||
ctx->size += GGML_PAD(size_cur, ctx->alignment);
|
||
}
|
||
}
|
||
|
||
// load the tensor data only if requested
|
||
if (params.ctx != NULL) {
|
||
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
|
||
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
|
||
// the ggml_tensor structs to the appropriate locations in the binary blob
|
||
|
||
// compute the exact size needed for the new ggml_context
|
||
const size_t mem_size =
|
||
params.no_alloc ?
|
||
(ctx->header.n_tensors )*ggml_tensor_overhead() :
|
||
(ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
|
||
|
||
struct ggml_init_params pdata = {
|
||
.mem_size = mem_size,
|
||
.mem_buffer = NULL,
|
||
.no_alloc = params.no_alloc,
|
||
};
|
||
|
||
*params.ctx = ggml_init(pdata);
|
||
if (*params.ctx == NULL) {
|
||
fprintf(stderr, "%s: failed to initialize context\n", __func__);
|
||
fclose(file);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
struct ggml_context * ctx_data = *params.ctx;
|
||
|
||
struct ggml_tensor * data = NULL;
|
||
|
||
if (!params.no_alloc) {
|
||
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
|
||
|
||
ok = ok && data != NULL;
|
||
|
||
// read the binary blob with the tensor data
|
||
ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
|
||
|
||
if (!ok) {
|
||
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
|
||
fclose(file);
|
||
ggml_free(ctx_data);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
ctx->data = data->data;
|
||
}
|
||
|
||
ggml_set_no_alloc(ctx_data, true);
|
||
|
||
// create the tensors
|
||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||
const int64_t ne[GGML_MAX_DIMS] = {
|
||
ctx->infos[i].ne[0],
|
||
ctx->infos[i].ne[1],
|
||
ctx->infos[i].ne[2],
|
||
ctx->infos[i].ne[3],
|
||
};
|
||
|
||
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
|
||
|
||
ok = ok && cur != NULL;
|
||
|
||
if (!ok) {
|
||
break;
|
||
}
|
||
|
||
ggml_set_name(cur, ctx->infos[i].name.data);
|
||
|
||
// point the data member to the appropriate location in the binary blob using the tensor infos
|
||
if (!params.no_alloc) {
|
||
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
|
||
cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
|
||
}
|
||
}
|
||
|
||
if (!ok) {
|
||
fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
|
||
fclose(file);
|
||
ggml_free(ctx_data);
|
||
gguf_free(ctx);
|
||
return NULL;
|
||
}
|
||
|
||
ggml_set_no_alloc(ctx_data, params.no_alloc);
|
||
}
|
||
|
||
fclose(file);
|
||
|
||
return ctx;
|
||
}
|
||
|
||
void gguf_free(struct gguf_context * ctx) {
|
||
if (ctx == NULL) {
|
||
return;
|
||
}
|
||
|
||
if (ctx->kv) {
|
||
// free string memory - not great..
|
||
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
|
||
gguf_free_kv(&ctx->kv[i]);
|
||
}
|
||
|
||
GGML_FREE(ctx->kv);
|
||
}
|
||
|
||
if (ctx->infos) {
|
||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||
|
||
if (info->name.data) {
|
||
GGML_FREE(info->name.data);
|
||
}
|
||
}
|
||
|
||
GGML_FREE(ctx->infos);
|
||
}
|
||
|
||
GGML_FREE(ctx);
|
||
}
|
||
|
||
const char * gguf_type_name(enum gguf_type type) {
|
||
return GGUF_TYPE_NAME[type];
|
||
}
|
||
|
||
int gguf_get_version(const struct gguf_context * ctx) {
|
||
return ctx->header.version;
|
||
}
|
||
|
||
size_t gguf_get_alignment(const struct gguf_context * ctx) {
|
||
return ctx->alignment;
|
||
}
|
||
|
||
size_t gguf_get_data_offset(const struct gguf_context * ctx) {
|
||
return ctx->offset;
|
||
}
|
||
|
||
void * gguf_get_data(const struct gguf_context * ctx) {
|
||
return ctx->data;
|
||
}
|
||
|
||
int gguf_get_n_kv(const struct gguf_context * ctx) {
|
||
return ctx->header.n_kv;
|
||
}
|
||
|
||
int gguf_find_key(const struct gguf_context * ctx, const char * key) {
|
||
// return -1 if key not found
|
||
int keyfound = -1;
|
||
|
||
const int n_kv = gguf_get_n_kv(ctx);
|
||
|
||
for (int i = 0; i < n_kv; ++i) {
|
||
if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
|
||
keyfound = i;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return keyfound;
|
||
}
|
||
|
||
const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
return ctx->kv[key_id].key.data;
|
||
}
|
||
|
||
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
return ctx->kv[key_id].type;
|
||
}
|
||
|
||
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
|
||
return ctx->kv[key_id].value.arr.type;
|
||
}
|
||
|
||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
|
||
return ctx->kv[key_id].value.arr.data;
|
||
}
|
||
|
||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
|
||
struct gguf_kv * kv = &ctx->kv[key_id];
|
||
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
|
||
return str->data;
|
||
}
|
||
|
||
int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
|
||
return ctx->kv[key_id].value.arr.n;
|
||
}
|
||
|
||
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
|
||
return ctx->kv[key_id].value.uint8;
|
||
}
|
||
|
||
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
|
||
return ctx->kv[key_id].value.int8;
|
||
}
|
||
|
||
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
|
||
return ctx->kv[key_id].value.uint16;
|
||
}
|
||
|
||
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
|
||
return ctx->kv[key_id].value.int16;
|
||
}
|
||
|
||
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
|
||
return ctx->kv[key_id].value.uint32;
|
||
}
|
||
|
||
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
|
||
return ctx->kv[key_id].value.int32;
|
||
}
|
||
|
||
float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
|
||
return ctx->kv[key_id].value.float32;
|
||
}
|
||
|
||
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
|
||
return ctx->kv[key_id].value.uint64;
|
||
}
|
||
|
||
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
|
||
return ctx->kv[key_id].value.int64;
|
||
}
|
||
|
||
double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
|
||
return ctx->kv[key_id].value.float64;
|
||
}
|
||
|
||
bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
|
||
return ctx->kv[key_id].value.bool_;
|
||
}
|
||
|
||
const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
|
||
return ctx->kv[key_id].value.str.data;
|
||
}
|
||
|
||
const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
|
||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
|
||
GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
|
||
return &ctx->kv[key_id].value;
|
||
}
|
||
|
||
int gguf_get_n_tensors(const struct gguf_context * ctx) {
|
||
return ctx->header.n_tensors;
|
||
}
|
||
|
||
int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
|
||
// return -1 if tensor not found
|
||
int tensorfound = -1;
|
||
|
||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||
|
||
for (int i = 0; i < n_tensors; ++i) {
|
||
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
|
||
tensorfound = i;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return tensorfound;
|
||
}
|
||
|
||
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
|
||
return ctx->infos[i].offset;
|
||
}
|
||
|
||
char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
|
||
return ctx->infos[i].name.data;
|
||
}
|
||
|
||
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
|
||
return ctx->infos[i].type;
|
||
}
|
||
|
||
// returns the index
|
||
static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
|
||
const int idx = gguf_find_key(ctx, key);
|
||
if (idx >= 0) {
|
||
return idx;
|
||
}
|
||
|
||
const int n_kv = gguf_get_n_kv(ctx);
|
||
|
||
ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
|
||
ctx->kv[n_kv].key.n = strlen(key);
|
||
ctx->kv[n_kv].key.data = strdup(key);
|
||
ctx->header.n_kv++;
|
||
|
||
return n_kv;
|
||
}
|
||
|
||
void gguf_remove_key(struct gguf_context * ctx, const char * key) {
|
||
const int idx = gguf_find_key(ctx, key);
|
||
if (idx >= 0) {
|
||
const int n_kv = gguf_get_n_kv(ctx);
|
||
gguf_free_kv(&ctx->kv[idx]);
|
||
for (int i = idx; i < n_kv-1; ++i) {
|
||
ctx->kv[i] = ctx->kv[i+1];
|
||
}
|
||
ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
|
||
ctx->header.n_kv--;
|
||
}
|
||
}
|
||
|
||
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_UINT8;
|
||
ctx->kv[idx].value.uint8 = val;
|
||
}
|
||
|
||
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_INT8;
|
||
ctx->kv[idx].value.int8 = val;
|
||
}
|
||
|
||
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_UINT16;
|
||
ctx->kv[idx].value.uint16 = val;
|
||
}
|
||
|
||
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_INT16;
|
||
ctx->kv[idx].value.int16 = val;
|
||
}
|
||
|
||
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_UINT32;
|
||
ctx->kv[idx].value.uint32 = val;
|
||
}
|
||
|
||
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_INT32;
|
||
ctx->kv[idx].value.int32 = val;
|
||
}
|
||
|
||
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
|
||
ctx->kv[idx].value.float32 = val;
|
||
}
|
||
|
||
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_UINT64;
|
||
ctx->kv[idx].value.uint64 = val;
|
||
}
|
||
|
||
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_INT64;
|
||
ctx->kv[idx].value.int64 = val;
|
||
}
|
||
|
||
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
|
||
ctx->kv[idx].value.float64 = val;
|
||
}
|
||
|
||
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_BOOL;
|
||
ctx->kv[idx].value.bool_ = val;
|
||
}
|
||
|
||
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_STRING;
|
||
ctx->kv[idx].value.str.n = strlen(val);
|
||
ctx->kv[idx].value.str.data = strdup(val);
|
||
}
|
||
|
||
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||
ctx->kv[idx].value.arr.type = type;
|
||
ctx->kv[idx].value.arr.n = n;
|
||
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
|
||
memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
|
||
}
|
||
|
||
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
|
||
const int idx = gguf_get_or_add_key(ctx, key);
|
||
|
||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
|
||
ctx->kv[idx].value.arr.n = n;
|
||
ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
|
||
for (int i = 0; i < n; i++) {
|
||
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
|
||
str->n = strlen(data[i]);
|
||
str->data = strdup(data[i]);
|
||
}
|
||
}
|
||
|
||
// set or add KV pairs from another context
|
||
void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
|
||
for (uint32_t i = 0; i < src->header.n_kv; i++) {
|
||
switch (src->kv[i].type) {
|
||
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
|
||
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
|
||
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
|
||
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
|
||
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
|
||
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
|
||
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
|
||
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
|
||
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
|
||
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
|
||
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
|
||
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
|
||
case GGUF_TYPE_ARRAY:
|
||
{
|
||
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
|
||
const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
|
||
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
|
||
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
|
||
}
|
||
gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
|
||
GGML_FREE((void *)data);
|
||
} else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
|
||
GGML_ABORT("nested arrays not supported");
|
||
} else {
|
||
gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
|
||
}
|
||
} break;
|
||
default: GGML_ABORT("invalid type");
|
||
}
|
||
}
|
||
}
|
||
|
||
void gguf_add_tensor(
|
||
struct gguf_context * ctx,
|
||
const struct ggml_tensor * tensor) {
|
||
GGML_ASSERT(tensor);
|
||
if (gguf_find_tensor(ctx, tensor->name) != -1) {
|
||
GGML_ABORT("duplicated tensor name");
|
||
}
|
||
|
||
const int idx = ctx->header.n_tensors;
|
||
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
|
||
|
||
ctx->infos[idx].name.n = strlen(tensor->name);
|
||
ctx->infos[idx].name.data = strdup(tensor->name);
|
||
|
||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||
ctx->infos[idx].ne[i] = 1;
|
||
}
|
||
|
||
ctx->infos[idx].n_dims = ggml_n_dims(tensor);
|
||
for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
|
||
ctx->infos[idx].ne[i] = tensor->ne[i];
|
||
}
|
||
|
||
ctx->infos[idx].type = tensor->type;
|
||
ctx->infos[idx].offset = 0;
|
||
ctx->infos[idx].data = tensor->data;
|
||
ctx->infos[idx].size = ggml_nbytes(tensor);
|
||
|
||
if (ctx->header.n_tensors > 0) {
|
||
ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
|
||
}
|
||
|
||
ctx->header.n_tensors++;
|
||
}
|
||
|
||
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
|
||
const int idx = gguf_find_tensor(ctx, name);
|
||
if (idx < 0) {
|
||
GGML_ABORT("tensor not found");
|
||
}
|
||
|
||
ctx->infos[idx].type = type;
|
||
}
|
||
|
||
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
|
||
const int idx = gguf_find_tensor(ctx, name);
|
||
if (idx < 0) {
|
||
GGML_ABORT("tensor not found");
|
||
}
|
||
|
||
ctx->infos[idx].data = data;
|
||
ctx->infos[idx].size = size;
|
||
|
||
// update offsets
|
||
for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
|
||
ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
|
||
}
|
||
}
|
||
|
||
//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
|
||
// fwrite(&val->n, sizeof(val->n), 1, file);
|
||
// fwrite(val->data, sizeof(char), val->n, file);
|
||
//}
|
||
//
|
||
//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
|
||
// fwrite(val, sizeof(char), size, file);
|
||
//}
|
||
|
||
struct gguf_buf {
|
||
void * data;
|
||
size_t size;
|
||
size_t offset;
|
||
};
|
||
|
||
static struct gguf_buf gguf_buf_init(size_t size) {
|
||
struct gguf_buf buf = {
|
||
/*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
|
||
/*buf.size =*/ size,
|
||
/*buf.offset =*/ 0,
|
||
};
|
||
|
||
return buf;
|
||
}
|
||
|
||
static void gguf_buf_free(struct gguf_buf buf) {
|
||
if (buf.data) {
|
||
GGML_FREE(buf.data);
|
||
}
|
||
}
|
||
|
||
static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
|
||
if (buf->offset + size > buf->size) {
|
||
buf->size = 1.5*(buf->offset + size);
|
||
if (buf->data) {
|
||
buf->data = realloc(buf->data, buf->size);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
|
||
gguf_buf_grow(buf, sizeof(val->n) + val->n);
|
||
|
||
if (buf->data) {
|
||
memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
|
||
}
|
||
buf->offset += sizeof(val->n);
|
||
|
||
if (buf->data) {
|
||
memcpy((char *) buf->data + buf->offset, val->data, val->n);
|
||
}
|
||
buf->offset += val->n;
|
||
}
|
||
|
||
static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
|
||
gguf_buf_grow(buf, el_size);
|
||
|
||
if (buf->data) {
|
||
memcpy((char *) buf->data + buf->offset, val, el_size);
|
||
}
|
||
buf->offset += el_size;
|
||
}
|
||
|
||
static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
|
||
// write header
|
||
gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
|
||
gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
|
||
gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
|
||
gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
|
||
|
||
// write key-value pairs
|
||
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
|
||
struct gguf_kv * kv = &ctx->kv[i];
|
||
|
||
gguf_bwrite_str(buf, &kv->key);
|
||
gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
|
||
|
||
switch (kv->type) {
|
||
case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
|
||
case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
|
||
case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
|
||
case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
|
||
case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
|
||
case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
|
||
case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
|
||
case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
|
||
case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
|
||
case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
|
||
case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
|
||
case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
|
||
case GGUF_TYPE_ARRAY:
|
||
{
|
||
gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
|
||
gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
|
||
|
||
switch (kv->value.arr.type) {
|
||
case GGUF_TYPE_UINT8:
|
||
case GGUF_TYPE_INT8:
|
||
case GGUF_TYPE_UINT16:
|
||
case GGUF_TYPE_INT16:
|
||
case GGUF_TYPE_UINT32:
|
||
case GGUF_TYPE_INT32:
|
||
case GGUF_TYPE_FLOAT32:
|
||
case GGUF_TYPE_UINT64:
|
||
case GGUF_TYPE_INT64:
|
||
case GGUF_TYPE_FLOAT64:
|
||
case GGUF_TYPE_BOOL:
|
||
{
|
||
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
|
||
} break;
|
||
case GGUF_TYPE_STRING:
|
||
{
|
||
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
|
||
gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
|
||
}
|
||
} break;
|
||
case GGUF_TYPE_ARRAY:
|
||
default: GGML_ABORT("invalid type");
|
||
}
|
||
} break;
|
||
default: GGML_ABORT("invalid type");
|
||
}
|
||
}
|
||
|
||
// write tensor infos
|
||
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||
|
||
gguf_bwrite_str(buf, &info->name);
|
||
gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
|
||
for (uint32_t j = 0; j < info->n_dims; ++j) {
|
||
gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
|
||
}
|
||
gguf_bwrite_el(buf, &info->type, sizeof(info->type));
|
||
gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
|
||
}
|
||
|
||
// we require the data section to be aligned, so take into account any padding
|
||
{
|
||
const size_t offset = buf->offset;
|
||
const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
|
||
|
||
if (offset_pad != offset) {
|
||
uint8_t pad = 0;
|
||
for (size_t i = 0; i < offset_pad - offset; ++i) {
|
||
gguf_bwrite_el(buf, &pad, sizeof(pad));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (only_meta) {
|
||
return;
|
||
}
|
||
|
||
size_t offset = 0;
|
||
|
||
// write tensor data
|
||
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||
|
||
const size_t size = info->size;
|
||
const size_t size_pad = GGML_PAD(size, ctx->alignment);
|
||
|
||
gguf_bwrite_el(buf, info->data, size);
|
||
|
||
if (size_pad != size) {
|
||
uint8_t pad = 0;
|
||
for (size_t j = 0; j < size_pad - size; ++j) {
|
||
gguf_bwrite_el(buf, &pad, sizeof(pad));
|
||
}
|
||
}
|
||
|
||
GGML_ASSERT(offset == info->offset);
|
||
|
||
offset += size_pad;
|
||
}
|
||
}
|
||
|
||
void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
|
||
FILE * file = ggml_fopen(fname, "wb");
|
||
if (!file) {
|
||
GGML_ABORT("failed to open file for writing");
|
||
}
|
||
|
||
struct gguf_buf buf = gguf_buf_init(16*1024);
|
||
|
||
gguf_write_to_buf(ctx, &buf, only_meta);
|
||
|
||
fwrite(buf.data, 1, buf.offset, file);
|
||
|
||
gguf_buf_free(buf);
|
||
|
||
fclose(file);
|
||
}
|
||
|
||
size_t gguf_get_meta_size(const struct gguf_context * ctx) {
|
||
// no allocs - only compute size
|
||
struct gguf_buf buf = gguf_buf_init(0);
|
||
|
||
gguf_write_to_buf(ctx, &buf, true);
|
||
|
||
return buf.offset;
|
||
}
|
||
|
||
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
|
||
struct gguf_buf buf = gguf_buf_init(16*1024);
|
||
|
||
gguf_write_to_buf(ctx, &buf, true);
|
||
|
||
memcpy(data, buf.data, buf.offset);
|
||
|
||
gguf_buf_free(buf);
|
||
}
|
||
|
||
void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
|
||
g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
|
||
g_logger_state.log_callback_user_data = user_data;
|
||
}
|