llama.cpp/examples/llava/llava-cli.cpp
Georgi Gerganov 0abc6a2c25
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
llama : llama_perf + option to disable timings during decode (#9355)
* llama : llama_perf + option to disable timings during decode

ggml-ci

* common : add llama_arg

* Update src/llama.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* perf : separate functions in the API

ggml-ci

* perf : safer pointer handling + naming update

ggml-ci

* minor : better local var name

* perf : abort on invalid sampler pointer

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-09-13 09:53:38 +03:00

339 lines
12 KiB
C++

#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
#include <cstdio>
#include <cstdlib>
#include <vector>
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
return true;
}
static const char * sample(struct gpt_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
gpt_sampler_accept(smpl, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
} else {
ret = llama_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
static const char* IMG_BASE64_TAG_END = "\">";
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
}
static bool prompt_contains_image(const std::string& prompt) {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
return (begin != std::string::npos);
}
// replaces the base64 image tag in the prompt with `replacement`
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
LOG_TEE("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
return NULL;
}
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
auto required_bytes = base64::required_encode_size(base64_str.size());
auto img_bytes = std::vector<unsigned char>(required_bytes);
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
if (!embed) {
LOG_TEE("%s: could not load image from base64 string.\n", __func__);
return NULL;
}
return embed;
}
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
if (begin == std::string::npos || end == std::string::npos) {
return prompt;
}
auto pre = prompt.substr(0, begin);
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
return pre + replacement + post;
}
struct llava_context {
struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL;
};
static void print_usage(int, char ** argv) {
LOG_TEE("\n example usage:\n");
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
// load and preprocess the image
llava_image_embed * embed = NULL;
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
LOG_TEE("using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
if (!embed) {
LOG_TEE("%s: can't load image from prompt\n", __func__);
return NULL;
}
params->prompt = remove_image_from_prompt(prompt);
} else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
if (!embed) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
return NULL;
}
}
return embed;
}
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
int n_past = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
std::string system_prompt, user_prompt;
size_t image_pos = prompt.find("<image>");
if (image_pos != std::string::npos) {
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
LOG_TEE("system_prompt: %s\n", system_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
LOG_TEE("user_prompt: %s\n", user_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
} else {
// llava-1.5 native mode
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
user_prompt = prompt + "\nASSISTANT:";
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
}
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
// generate the response
LOG_TEE("\n");
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
if (!smpl) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
printf("%s", tmp);
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
fflush(stdout);
}
gpt_sampler_free(smpl);
printf("\n");
}
static struct llama_model * llava_init(gpt_params * params) {
llama_backend_init();
llama_numa_init(params->numa);
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n" , __func__);
return NULL;
}
return model;
}
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
return NULL;
}
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->ctx_clip = ctx_clip;
ctx_llava->model = model;
return ctx_llava;
}
static void llava_free(struct llava_context * ctx_llava) {
if (ctx_llava->ctx_clip) {
clip_free(ctx_llava->ctx_clip);
ctx_llava->ctx_clip = NULL;
}
llama_free(ctx_llava->ctx_llama);
llama_free_model(ctx_llava->model);
llama_backend_free();
}
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
LOG_TEE("%s", text);
}
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
return 1;
}
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("llava", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
llama_log_set(llama_log_callback_logTee, nullptr);
#endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}
auto model = llava_init(&params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
return 1;
}
if (prompt_contains_image(params.prompt)) {
auto ctx_llava = llava_init_context(&params, model);
auto image_embed = load_image(ctx_llava, &params, "");
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
} else {
for (auto & image : params.image) {
auto ctx_llava = llava_init_context(&params, model);
auto image_embed = load_image(ctx_llava, &params, image);
if (!image_embed) {
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
return 1;
}
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
}
llama_free_model(model);
return 0;
}