mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 23:34:35 +00:00
cbef542879
- use f-strings where possible - drop first param of encode/decode functions since "utf-8" is the default
101 lines
3.1 KiB
Python
101 lines
3.1 KiB
Python
#!/usr/bin/env python3
|
|
# Original by https://github.com/eiz
|
|
# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818
|
|
import argparse
|
|
import glob
|
|
import os
|
|
import struct
|
|
import sys
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Upgrade old ggml model files to the current format')
|
|
parser.add_argument('dir_model', help='directory containing ggml .bin files')
|
|
parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file')
|
|
return parser.parse_args()
|
|
|
|
def read_header(f_in):
|
|
struct_fmt = "i" * (3 + len(HPARAMS))
|
|
struct_size = struct.calcsize(struct_fmt)
|
|
buf = f_in.read(struct_size)
|
|
return struct.unpack(struct_fmt, buf)
|
|
|
|
def write_header(f_out, header):
|
|
(magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header
|
|
|
|
if magic != 0x67676d6c:
|
|
raise Exception('Invalid file magic. Must be an old style ggml file.')
|
|
|
|
values = [
|
|
0x67676d66, # magic: ggml in hex
|
|
1, # file version
|
|
vocab_size,
|
|
dim,
|
|
multiple_of,
|
|
n_heads,
|
|
n_layers,
|
|
rot,
|
|
ftype
|
|
]
|
|
f_out.write(struct.pack("i" * len(values), *values))
|
|
|
|
def write_tokens(fout, tokenizer):
|
|
for i in range(tokenizer.vocab_size()):
|
|
if tokenizer.is_unknown(i):
|
|
text = " \u2047 ".encode()
|
|
elif tokenizer.is_control(i):
|
|
text = b""
|
|
elif tokenizer.is_byte(i):
|
|
piece = tokenizer.id_to_piece(i)
|
|
if len(piece) != 6:
|
|
print(f"Invalid token: {piece}")
|
|
sys.exit(1)
|
|
byte_value = int(piece[3:-1], 16)
|
|
text = struct.pack("B", byte_value)
|
|
else:
|
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
|
|
|
def read_tokens(f_in, tokenizer):
|
|
for i in range(tokenizer.vocab_size()):
|
|
len_b = f_in.read(4)
|
|
(length,) = struct.unpack("i", len_b)
|
|
f_in.read(length)
|
|
|
|
def copy_all_data(f_out, f_in):
|
|
while True:
|
|
buf = f_in.read(1024 * 1024)
|
|
if not buf:
|
|
break
|
|
f_out.write(buf)
|
|
|
|
def convert_one_file(path_in, tokenizer):
|
|
path_tmp = f"{path_in}.tmp"
|
|
path_orig= f"{path_in}.orig"
|
|
print(f"converting {path_in}")
|
|
with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out:
|
|
write_header(f_out, read_header(f_in))
|
|
read_tokens(f_in, tokenizer)
|
|
write_tokens(f_out, tokenizer)
|
|
copy_all_data(f_out, f_in)
|
|
os.rename(path_in, path_orig)
|
|
os.rename(path_tmp, path_in)
|
|
|
|
def main():
|
|
args = parse_args()
|
|
files = []
|
|
files.extend(glob.glob(f"{args.dir_model}/*.bin"))
|
|
files.extend(glob.glob(f"{args.dir_model}/*.bin.*"))
|
|
|
|
tokenizer = SentencePieceProcessor(args.tokenizer_model)
|
|
|
|
for file in files:
|
|
convert_one_file(file, tokenizer)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|