llama.cpp/gguf-py/gguf/utility.py
compilade 328884f421
gguf-py : fix some metadata name extraction edge cases (#8591)
* gguf-py : fix some metadata name extraction edge cases

* convert_lora : use the lora dir for the model card path

* gguf-py : more metadata edge cases fixes

Multiple finetune versions are now joined together,
and the removal of the basename annotation on trailing versions
is more robust.

* gguf-py : add more name metadata extraction tests

* convert_lora : fix default filename

The default filename was previously hardcoded.

* convert_hf : Model.fname_out can no longer be None

* gguf-py : do not use title case for naming convention

Some models use acronyms in lowercase,
which can't be title-cased like other words,
so it's best to simply use the same case
as in the original model name.

Note that the size label still has an uppercased suffix
to make it distinguishable from the context size of a finetune.
2024-07-20 21:58:49 -04:00

70 lines
2.9 KiB
Python

from __future__ import annotations
from typing import Literal
def fill_templated_filename(filename: str, output_type: str | None) -> str:
# Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf'
ftype_lowercase: str = output_type.lower() if output_type is not None else ""
ftype_uppercase: str = output_type.upper() if output_type is not None else ""
return filename.format(ftype_lowercase,
outtype=ftype_lowercase, ftype=ftype_lowercase,
OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase)
def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str:
if model_params_count > 1e12 :
# Trillions Of Parameters
scaled_model_params = model_params_count * 1e-12
scale_suffix = "T"
elif model_params_count > 1e9 :
# Billions Of Parameters
scaled_model_params = model_params_count * 1e-9
scale_suffix = "B"
elif model_params_count > 1e6 :
# Millions Of Parameters
scaled_model_params = model_params_count * 1e-6
scale_suffix = "M"
else:
# Thousands Of Parameters
scaled_model_params = model_params_count * 1e-3
scale_suffix = "K"
fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0)
return f"{scaled_model_params:.{fix}f}{scale_suffix}"
def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str:
if expert_count > 0:
pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2)
size_class = f"{expert_count}x{pretty_size}"
else:
size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2)
return size_class
def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str:
# Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention
if base_name is not None:
name = base_name.strip().replace(' ', '-').replace('/', '-')
elif model_name is not None:
name = model_name.strip().replace(' ', '-').replace('/', '-')
else:
name = "ggml-model"
parameters = f"-{size_label}" if size_label is not None else ""
finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else ""
version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else ""
kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else ""
return f"{name}{parameters}{finetune}{version}{encoding}{kind}"