mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
574406dc7e
* ggml : add Q5_0 quantization (cuBLAS only) * ggml : fix Q5_0 qh -> uint32_t * ggml : fix q5_0 histogram stats * ggml : q5_0 scalar dot product * ggml : q5_0 ARM NEON dot * ggml : q5_0 more efficient ARM NEON using uint64_t masks * ggml : rename Q5_0 -> Q5_1 * ggml : adding Q5_0 mode * quantize : add Q5_0 and Q5_1 to map * ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195) --------- Co-authored-by: Stephan Walter <stephan@walter.name>
83 lines
2.3 KiB
C++
83 lines
2.3 KiB
C++
#include "ggml.h"
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <map>
|
|
#include <string>
|
|
|
|
static const std::map<std::string, enum llama_ftype> LLAMA_FTYPE_MAP = {
|
|
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
|
|
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
|
|
{"q4_2", LLAMA_FTYPE_MOSTLY_Q4_2},
|
|
{"q4_3", LLAMA_FTYPE_MOSTLY_Q4_3},
|
|
{"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0},
|
|
{"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1},
|
|
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
|
|
};
|
|
|
|
// usage:
|
|
// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
|
//
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
if (argc < 4) {
|
|
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type [nthread]\n", argv[0]);
|
|
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
|
|
fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// needed to initialize f16 tables
|
|
{
|
|
struct ggml_init_params params = { 0, NULL, false };
|
|
struct ggml_context * ctx = ggml_init(params);
|
|
ggml_free(ctx);
|
|
}
|
|
|
|
const std::string fname_inp = argv[1];
|
|
const std::string fname_out = argv[2];
|
|
|
|
enum llama_ftype ftype;
|
|
if (argv[3][0] == 'q') {
|
|
auto it = LLAMA_FTYPE_MAP.find(argv[3]);
|
|
if (it == LLAMA_FTYPE_MAP.end()) {
|
|
fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, argv[3]);
|
|
return 1;
|
|
}
|
|
ftype = it->second;
|
|
} else {
|
|
ftype = (enum llama_ftype)atoi(argv[3]);
|
|
}
|
|
|
|
int nthread = argc > 4 ? atoi(argv[4]) : 0;
|
|
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
int64_t t_quantize_us = 0;
|
|
|
|
// load the model
|
|
{
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype, nthread)) {
|
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_quantize_us = ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
printf("\n");
|
|
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
|
}
|
|
|
|
return 0;
|
|
}
|