llama.cpp/examples/llava/clip.cpp
tc-mb 3071c0a5f2
llava : support MiniCPM-V-2.5 (#7599)
* init

* rename

* add run android for termux in readme

* add android readme

* add instructions in readme

* change name in readme

* Update README.md

* fixed line

* add result in readme

* random pos_embed

* add positions index

* change for ollama

* change for ollama

* better pos_embed in clip

* support ollama

* updata cmakelist

* updata cmakelist

* rename wrapper

* clear code

* replace and organize code

* add link

* sync master

* fix warnings

* fix warnings

* fix bug in bicubic resize when need resize iamge smaller

* receive review comments and modify

* receive review comments and modify

* put all code into llava dir

* fix quality problem in pr code

* change n_layer

* add space in "-1"

* imitate reshape bug of python code

* fix bug in clip

* fix issues for merging

* fix llama-minicpmv-cli in cmake file

* change pr readme

* fix code review

* remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir

* fix cmakefile

* add warn

* fix KEY_HAS_MINICPMV_PROJ

* remove load_image_size into clip_ctx

* remove the extern "C", MINICPMV_API

* fix uhd code for review comment

* delete minicpmv-wrapper in pr

* remove uhd_image_embed

* Modify 2 notes

* clip : style changes

* del common.h in clip

* fix Type-Check error

* fix Type-Check error

* fix Type-Check error

* fix Type-Check error

* fix makefile error

* fix ubuntu-make error

* try fix clip

* try fix 1

---------

Co-authored-by: Hongji Zhu <fireyoucan@gmail.com>
Co-authored-by: harvestingmoon <leewenyeong@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-09 13:33:53 +03:00

2564 lines
108 KiB
C++

// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "log.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
//#define CLIP_DEBUG_FUNCTIONS
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), buf.size());
}
//
// key constants
//
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
#define KEY_N_HEAD "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
//
// tensor name constants
//
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
#define TN_MINICPMV_PROJ "resampler.proj.weight"
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_UNKNOWN,
};
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
};
//
// utilities to get data from a gguf file
//
static int get_key_idx(const gguf_context * ctx, const char * key) {
int i = gguf_find_key(ctx, key);
if (i == -1) {
LOG_TEE("key %s not found in file\n", key);
throw std::runtime_error(format("Missing required key: %s", key));
}
return i;
}
static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
const int i = get_key_idx(ctx, key.c_str());
return gguf_get_val_u32(ctx, i);
}
static float get_f32(const gguf_context * ctx, const std::string & key) {
const int i = get_key_idx(ctx, key.c_str());
return gguf_get_val_f32(ctx, i);
}
static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
if (!cur) {
throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
}
return cur;
}
static std::string get_ftype(int ftype) {
return ggml_type_name(static_cast<ggml_type>(ftype));
}
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return format("unknown type %d", type);
}
}
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
std::string result;
for (size_t pos = 0; ; pos += search.length()) {
auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {
result += s.substr(pos, s.size() - pos);
break;
}
result += s.substr(pos, new_pos - pos) + replace;
pos = new_pos;
}
s = std::move(result);
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
replace_all(val, "\\", "\\\\");
replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
size_t tensor_size = ggml_nbytes(tensor);
LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
}
static projector_type clip_projector_type_from_string(const std::string & name) {
for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
if (kv.second == name) {
return kv.first;
}
}
return PROJECTOR_TYPE_UNKNOWN;
}
#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
return;
}
// PPM header: P6 format, width, height, and max color value
file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
// Write pixel data
for (size_t i = 0; i < img.buf.size(); i += 3) {
// PPM expects binary data in RGB format, which matches our image buffer
file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
}
file.close();
}
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
return;
}
int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
int bytesPerPixel = 3;
int widthInBytes = img.nx * bytesPerPixel;
int paddingAmount = (4 - (widthInBytes % 4)) % 4;
int stride = widthInBytes + paddingAmount;
// Bitmap file header
unsigned char fileHeader[14] = {
'B','M', // Signature
0,0,0,0, // Image file size in bytes
0,0,0,0, // Reserved
54,0,0,0 // Start of pixel array
};
// Total file size
fileSize = 54 + (stride * img.ny);
fileHeader[2] = (unsigned char)(fileSize);
fileHeader[3] = (unsigned char)(fileSize >> 8);
fileHeader[4] = (unsigned char)(fileSize >> 16);
fileHeader[5] = (unsigned char)(fileSize >> 24);
// Bitmap information header (BITMAPINFOHEADER)
unsigned char infoHeader[40] = {
40,0,0,0, // Size of this header (40 bytes)
0,0,0,0, // Image width
0,0,0,0, // Image height
1,0, // Number of color planes
24,0, // Bits per pixel
0,0,0,0, // No compression
0,0,0,0, // Image size (can be 0 for no compression)
0,0,0,0, // X pixels per meter (not specified)
0,0,0,0, // Y pixels per meter (not specified)
0,0,0,0, // Total colors (color table not used)
0,0,0,0 // Important colors (all are important)
};
// Width and height in the information header
infoHeader[4] = (unsigned char)(img.nx);
infoHeader[5] = (unsigned char)(img.nx >> 8);
infoHeader[6] = (unsigned char)(img.nx >> 16);
infoHeader[7] = (unsigned char)(img.nx >> 24);
infoHeader[8] = (unsigned char)(img.ny);
infoHeader[9] = (unsigned char)(img.ny >> 8);
infoHeader[10] = (unsigned char)(img.ny >> 16);
infoHeader[11] = (unsigned char)(img.ny >> 24);
// Write file headers
file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
// Pixel data
std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
for (int x = 0; x < img.nx; ++x) {
// Each pixel
size_t pixelIndex = (y * img.nx + x) * 3;
unsigned char pixel[3] = {
img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
img.buf[pixelIndex + 1],
img.buf[pixelIndex]
};
file.write(reinterpret_cast<char*>(pixel), 3);
}
// Write padding for the row
file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
}
file.close();
}
// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(3 * src.nx * src.ny);
for (size_t i = 0; i < src.buf.size(); ++i) {
dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
}
}
#endif
//
// clip layers
//
struct clip_hparams {
int32_t image_size;
int32_t patch_size;
int32_t hidden_size;
int32_t n_intermediate;
int32_t projection_dim;
int32_t n_head;
int32_t n_layer;
float eps;
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
int32_t image_grid_pinpoints[32];
int32_t image_crop_resolution;
};
struct clip_layer {
// attention
struct ggml_tensor * k_w;
struct ggml_tensor * k_b;
struct ggml_tensor * q_w;
struct ggml_tensor * q_b;
struct ggml_tensor * v_w;
struct ggml_tensor * v_b;
struct ggml_tensor * o_w;
struct ggml_tensor * o_b;
// layernorm 1
struct ggml_tensor * ln_1_w;
struct ggml_tensor * ln_1_b;
// ff
struct ggml_tensor * ff_i_w;
struct ggml_tensor * ff_i_b;
struct ggml_tensor * ff_o_w;
struct ggml_tensor * ff_o_b;
// layernorm 2
struct ggml_tensor * ln_2_w;
struct ggml_tensor * ln_2_b;
};
struct clip_vision_model {
struct clip_hparams hparams;
// embeddings
struct ggml_tensor * class_embedding;
struct ggml_tensor * patch_embeddings;
struct ggml_tensor * patch_bias;
struct ggml_tensor * position_embeddings;
struct ggml_tensor * pre_ln_w;
struct ggml_tensor * pre_ln_b;
std::vector<clip_layer> layers;
struct ggml_tensor * post_ln_w;
struct ggml_tensor * post_ln_b;
struct ggml_tensor * projection;
// LLaVA projection
struct ggml_tensor * mm_0_w = NULL;
struct ggml_tensor * mm_0_b = NULL;
struct ggml_tensor * mm_2_w = NULL;
struct ggml_tensor * mm_2_b = NULL;
struct ggml_tensor * image_newline = NULL;
// Yi type models with mlp+normalization projection
struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
struct ggml_tensor * mm_1_b = NULL;
struct ggml_tensor * mm_3_w = NULL;
struct ggml_tensor * mm_3_b = NULL;
struct ggml_tensor * mm_4_w = NULL;
struct ggml_tensor * mm_4_b = NULL;
// MobileVLM projection
struct ggml_tensor * mm_model_mlp_1_w;
struct ggml_tensor * mm_model_mlp_1_b;
struct ggml_tensor * mm_model_mlp_3_w;
struct ggml_tensor * mm_model_mlp_3_b;
struct ggml_tensor * mm_model_block_1_block_0_0_w;
struct ggml_tensor * mm_model_block_1_block_0_1_w;
struct ggml_tensor * mm_model_block_1_block_0_1_b;
struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
struct ggml_tensor * mm_model_block_1_block_2_0_w;
struct ggml_tensor * mm_model_block_1_block_2_1_w;
struct ggml_tensor * mm_model_block_1_block_2_1_b;
struct ggml_tensor * mm_model_block_2_block_0_0_w;
struct ggml_tensor * mm_model_block_2_block_0_1_w;
struct ggml_tensor * mm_model_block_2_block_0_1_b;
struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
struct ggml_tensor * mm_model_block_2_block_2_0_w;
struct ggml_tensor * mm_model_block_2_block_2_1_w;
struct ggml_tensor * mm_model_block_2_block_2_1_b;
// MobileVLM_V2 projection
struct ggml_tensor * mm_model_mlp_0_w;
struct ggml_tensor * mm_model_mlp_0_b;
struct ggml_tensor * mm_model_mlp_2_w;
struct ggml_tensor * mm_model_mlp_2_b;
struct ggml_tensor * mm_model_peg_0_w;
struct ggml_tensor * mm_model_peg_0_b;
// MINICPMV projection
struct ggml_tensor * mm_model_pos_embed_k;
struct ggml_tensor * mm_model_query;
struct ggml_tensor * mm_model_proj;
struct ggml_tensor * mm_model_kv_proj;
struct ggml_tensor * mm_model_attn_q_w;
struct ggml_tensor * mm_model_attn_q_b;
struct ggml_tensor * mm_model_attn_k_w;
struct ggml_tensor * mm_model_attn_k_b;
struct ggml_tensor * mm_model_attn_v_w;
struct ggml_tensor * mm_model_attn_v_b;
struct ggml_tensor * mm_model_attn_o_w;
struct ggml_tensor * mm_model_attn_o_b;
struct ggml_tensor * mm_model_ln_q_w;
struct ggml_tensor * mm_model_ln_q_b;
struct ggml_tensor * mm_model_ln_kv_w;
struct ggml_tensor * mm_model_ln_kv_b;
struct ggml_tensor * mm_model_ln_post_w;
struct ggml_tensor * mm_model_ln_post_b;
};
struct clip_ctx {
bool has_text_encoder = false;
bool has_vision_encoder = false;
bool has_llava_projector = false;
bool has_minicpmv_projector = false;
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
float image_mean[3];
float image_std[3];
bool use_gelu = false;
int32_t ftype = 1;
bool has_class_embedding = true;
bool has_pre_norm = true;
bool has_post_norm = false;
bool has_patch_bias = false;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_data;
std::vector<uint8_t> buf_compute_meta;
// memory buffers to evaluate the model
ggml_backend_buffer_t params_buffer = NULL;
ggml_backend_t backend = NULL;
ggml_gallocr_t compute_alloc = NULL;
struct clip_image_size * load_image_size;
};
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
return nullptr;
}
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
if (ctx->has_minicpmv_projector) {
if (load_image_size == nullptr) {
load_image_size = clip_image_size_init();
}
LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
image_size_width = load_image_size->width;
image_size_height = load_image_size->height;
if (is_inf) {
image_size_width = imgs->data->nx;
image_size_height = imgs->data->ny;
}
}
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
int n_layer = hparams.n_layer;
const float eps = hparams.eps;
const int batch_size = imgs->size;
if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
GGML_ASSERT(batch_size == 1);
}
struct ggml_init_params params = {
/*.mem_size =*/ ctx->buf_compute_meta.size(),
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
if (ctx->has_patch_bias) {
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
}
struct ggml_tensor * embeddings = inp;
struct ggml_tensor * pos_embed = nullptr;
if (ctx->has_llava_projector) {
// concat class_embeddings and patch_embeddings
if (ctx->has_class_embedding) {
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
}
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
embeddings =
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
if (ctx->has_minicpmv_projector) {
int pos_w = image_size_width/patch_size;
int pos_h = image_size_height/patch_size;
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
ggml_set_name(pos_embed, "pos_embed");
ggml_set_input(pos_embed);
}
// pre-layernorm
if (ctx->has_pre_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
// loop over layers
if (ctx->has_minicpmv_projector) {
n_layer += 1;
}
for (int il = 0; il < n_layer - 1; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
// layernorm1
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
model.layers[il].ln_1_b);
}
// self-attention
{
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * K =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * V =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
KQ = ggml_soft_max_inplace(ctx0, KQ);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
}
// attention output
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, embeddings);
embeddings = cur; // embeddings = residual, cur = hidden_states
// layernorm2
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
if (ctx->use_gelu) {
cur = ggml_gelu_inplace(ctx0, cur);
} else {
cur = ggml_gelu_quick_inplace(ctx0, cur);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
if (ctx->has_post_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// llava projector
if (ctx->has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
ggml_set_name(patches, "patches");
ggml_set_input(patches);
// shape [1, 576, 1024]
// ne is whcn, ne = [1024, 576, 1, 1]
embeddings = ggml_get_rows(ctx0, embeddings, patches);
// print_tensor_info(embeddings, "embeddings");
// llava projector
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
// First LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
model.mm_1_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
// Second LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
model.mm_4_b);
}
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projector
int n_patch = 24;
struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
mlp_1 = ggml_gelu(ctx0, mlp_1);
struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
// mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
// block 1
struct ggml_tensor * block_1 = nullptr;
{
// transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
// stride = 1, padding = 1, bias is nullptr
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
// layer norm
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// hardswish
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// residual
block_1 = ggml_add(ctx0, mlp_3, block_1);
}
// block_2
{
// stride = 2
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// layer norm
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// hardswish
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
// not sure the parameters is right for globalAvgPooling
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
// block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
}
embeddings = block_1;
}
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
{
int n_patch = 24;
struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
mlp_0 = ggml_gelu(ctx0, mlp_0);
struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
// mlp_2 ne = [2048, 576, 1, 1]
// // AVG Pool Layer 2*2, strides = 2
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
// mlp_2 ne = [576, 2048, 1, 1]
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
// mlp_2 ne [24, 24, 2048, 1]
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
// weight ne = [3, 3, 2048, 1]
struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
embeddings = peg_0;
}
else {
GGML_ABORT("fatal error");
}
}
// minicpmv projector
else if (ctx->has_minicpmv_projector)
{
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
struct ggml_tensor * q = model.mm_model_query;
{ // layernorm
q = ggml_norm(ctx0, q, eps);
q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
}
struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
{ // layernorm
v = ggml_norm(ctx0, v, eps);
v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
}
struct ggml_tensor * k;
{ // position
// q = ggml_add(ctx0, q, model.mm_model_pos_embed);
k = ggml_add(ctx0, v, pos_embed);
}
{ // attention
const int hidden_size = 4096;
const int d_head = 128;
const int n_head = hidden_size/d_head;
const int num_query = 96;
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
// permute
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
KQ = ggml_soft_max_inplace(ctx0, KQ);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
}
{ // layernorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
}
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
}
else {
GGML_ASSERT(false);
}
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
ggml_free(ctx0);
return gf;
}
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
struct ggml_context * meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &meta,
};
struct gguf_context * ctx = gguf_init_from_file(fname, params);
if (!ctx) {
throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
}
if (verbosity >= 1) {
const int n_tensors = gguf_get_n_tensors(ctx);
const int n_kv = gguf_get_n_kv(ctx);
const int ftype = get_u32(ctx, KEY_FTYPE);
const std::string ftype_str = get_ftype(ftype);
const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
const std::string description = gguf_get_val_str(ctx, idx_desc);
const int idx_name = gguf_find_key(ctx, KEY_NAME);
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
const std::string name = gguf_get_val_str(ctx, idx_name);
LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
}
LOG_TEE("%s: description: %s\n", __func__, description.c_str());
LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
LOG_TEE("\n");
}
const int n_tensors = gguf_get_n_tensors(ctx);
// kv
const int n_kv = gguf_get_n_kv(ctx);
LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
__func__, n_kv, n_tensors, fname);
{
std::map<enum ggml_type, uint32_t> n_type;
for (int i = 0; i < n_tensors; i++) {
enum ggml_type type = gguf_get_tensor_type(ctx, i);
n_type[type]++;
}
LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(ctx, i);
const enum gguf_type type = gguf_get_kv_type(ctx, i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
: gguf_type_name(type);
std::string value = gguf_kv_to_str(ctx, i);
const size_t MAX_VALUE_LEN = 40;
if (value.size() > MAX_VALUE_LEN) {
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
}
replace_all(value, "\n", "\\n");
LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
}
// print type counts
for (auto & kv : n_type) {
if (kv.second == 0) {
continue;
}
LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
}
}
// data
size_t model_size = 0;
{
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
enum ggml_type type = gguf_get_tensor_type(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
size_t tensor_size = ggml_nbytes(cur);
model_size += tensor_size;
if (verbosity >= 3) {
LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
}
}
}
clip_ctx * new_clip = new clip_ctx;
// update projector type
{
int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
if (idx != -1) {
const std::string proj_type = gguf_get_val_str(ctx, idx);
new_clip->proj_type = clip_projector_type_from_string(proj_type);
} else {
new_clip->proj_type = PROJECTOR_TYPE_MLP;
}
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
}
}
}
#ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0);
LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
LOG_TEE("%s: CLIP using Metal backend\n", __func__);
#endif
#ifdef GGML_USE_CANN
new_clip->backend = ggml_backend_cann_init(0);
LOG_TEE("%s: CLIP using CANN backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_TEE("%s: CLIP using CPU backend\n", __func__);
}
// model size and capabilities
{
int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
if (idx != -1) {
new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
}
idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
if (idx != -1) {
new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
}
// GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
GGML_ASSERT(new_clip->has_vision_encoder);
GGML_ASSERT(!new_clip->has_text_encoder);
idx = get_key_idx(ctx, KEY_USE_GELU);
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
if (verbosity >= 1) {
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
}
LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
// load tensors
{
std::vector<uint8_t> read_buf;
struct ggml_init_params params = {
/*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
new_clip->ctx_data = ggml_init(params);
if (!new_clip->ctx_data) {
LOG_TEE("%s: ggml_init() failed\n", __func__);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
LOG_TEE("cannot open model file for loading tensors\n");
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
// add tensors to context
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * t = ggml_get_tensor(meta, name);
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
ggml_set_name(cur, name);
}
// alloc memory and offload data
new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
int num_bytes = ggml_nbytes(cur);
if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
fin.close();
}
// vision model
if (new_clip->has_vision_encoder) {
// load vision model
auto & vision_model = new_clip->vision_model;
auto & hparams = vision_model.hparams;
hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
try {
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
hparams.image_grid_pinpoints[i] = pinpoints[i];
}
if (n < 32)
hparams.image_grid_pinpoints[n] = 0;
} catch (std::runtime_error & /*e*/) {
hparams.image_grid_pinpoints[0]=0;
}
try {
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
} catch (std::runtime_error & /*e*/) {
strcpy(hparams.mm_patch_merge_type, "flat");
}
try {
hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
} catch(const std::exception& /*e*/) {
hparams.image_crop_resolution = hparams.image_size;
}
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
for (int i = 0; i < 3; ++i) {
new_clip->image_mean[i] = mean_data[i];
new_clip->image_std[i] = std_data[i];
}
if (verbosity >= 2) {
LOG_TEE("\n%s: vision model hparams\n", __func__);
LOG_TEE("image_size %d\n", hparams.image_size);
LOG_TEE("patch_size %d\n", hparams.patch_size);
LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
LOG_TEE("v_n_head %d\n", hparams.n_head);
LOG_TEE("v_n_layer %d\n", hparams.n_layer);
LOG_TEE("v_eps %f\n", hparams.eps);
LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
LOG_TEE("v_image_grid_pinpoints: ");
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
}
LOG_TEE("\n");
LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
}
try {
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
new_clip->has_class_embedding = true;
} catch (const std::exception& /*e*/) {
new_clip->has_class_embedding = false;
}
try {
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
new_clip->has_pre_norm = true;
} catch (std::exception & /*e*/) {
new_clip->has_pre_norm = false;
}
try {
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
new_clip->has_post_norm = true;
} catch (std::exception & /*e*/) {
new_clip->has_post_norm = false;
}
try {
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
new_clip->has_patch_bias = true;
} catch (std::exception & /*e*/) {
new_clip->has_patch_bias = false;
}
try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
} catch(const std::exception& /*e*/) {
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
}
// LLaVA projection
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
try {
// Yi-type llava
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
} catch (std::runtime_error & /*e*/) { }
try {
// missing in Yi-type llava
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
} catch (std::runtime_error & /*e*/) { }
try {
// Yi-type llava
vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
} catch (std::runtime_error & /*e*/) { }
try {
// Yi-type llava
vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
} catch (std::runtime_error & /*e*/) { }
try {
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
} catch (std::runtime_error & /*e*/) { }
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projection
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
}
else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
{
// MobilVLM_V2 projection
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
}
else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
// vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
}
else {
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
}
vision_model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) {
auto & layer = vision_model.layers[il];
layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
}
}
ggml_free(meta);
new_clip->ctx_gguf = ctx;
// measure mem requirement and allocate
{
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
clip_image_f32_batch batch;
batch.size = 1;
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
}
return new_clip;
}
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
ctx_clip->load_image_size = load_image_size;
}
struct clip_image_size * clip_image_size_init() {
struct clip_image_size * load_image_size = new struct clip_image_size();
load_image_size->width = 448;
load_image_size->height = 448;
return load_image_size;
}
struct clip_image_u8 * clip_image_u8_init() {
return new clip_image_u8();
}
struct clip_image_f32 * clip_image_f32_init() {
return new clip_image_f32();
}
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
}
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
}
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->buf.resize(3 * nx * ny);
memcpy(img->buf.data(), data, img->buf.size());
}
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc;
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) {
LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
stbi_image_free(data);
return true;
}
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
int nx, ny, nc;
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) {
LOG_TEE("%s: failed to decode image bytes\n", __func__);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
stbi_image_free(data);
return true;
}
// Linear interpolation between two points
inline float clip_lerp(float s, float e, float t) {
return s + (e - s) * t;
}
// Bilinear resize function
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float x_ratio = static_cast<float>(src.nx - 1) / target_width;
float y_ratio = static_cast<float>(src.ny - 1) / target_height;
for (int y = 0; y < target_height; y++) {
for (int x = 0; x < target_width; x++) {
float px = x_ratio * x;
float py = y_ratio * y;
int x_floor = static_cast<int>(px);
int y_floor = static_cast<int>(py);
float x_lerp = px - x_floor;
float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) {
float top = clip_lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp
);
float bottom = clip_lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp
);
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
}
}
}
}
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
dst->nx = src->nx;
dst->ny = src->ny;
dst->buf.resize(src->buf.size());
for (size_t i = 0; i < src->buf.size(); ++i) {
int c = i % 3; // rgb
dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
}
}
inline float clip(float x, float lower, float upper) {
return std::max(lower, std::min(x, upper));
}
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float Cc;
float C[5];
float d0, d2, d3, a0, a1, a2, a3;
int i, j, k, jj;
int x, y;
float dx, dy;
float tx, ty;
tx = (float)nx / (float)target_width;
ty = (float)ny / (float)target_height;
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
for (i = 0; i < target_height; i++) {
for (j = 0; j < target_width; j++) {
x = (int)(tx * j);
y = (int)(ty * i);
dx = tx * j - x;
dy = ty * i - y;
for (k = 0; k < 3; k++) {
for (jj = 0; jj <= 3; jj++) {
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
d0 = C[0] - C[1];
d2 = C[2] - C[1];
d3 = C[3] - C[1];
a0 = C[1];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
}
}
}
}
return true;
}
// llava-1.6 type of resize_and_pad (black)
static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
int target_width = target_resolution.first;
int target_height = target_resolution.second;
float scale_w = static_cast<float>(target_width) / image.nx;
float scale_h = static_cast<float>(target_height) / image.ny;
int new_width, new_height;
if (scale_w < scale_h) {
new_width = target_width;
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
} else {
new_height = target_height;
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
}
clip_image_u8 resized_image;
// bilinear_resize(image, resized_image, new_width, new_height);
bicubic_resize(image, resized_image, new_width, new_height);
clip_image_u8 padded_image;
padded_image.nx = target_width;
padded_image.ny = target_height;
padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
// Calculate padding offsets
int pad_x = (target_width - new_width) / 2;
int pad_y = (target_height - new_height) / 2;
// Copy the resized image into the center of the padded buffer
for (int y = 0; y < new_height; ++y) {
for (int x = 0; x < new_width; ++x) {
for (int c = 0; c < 3; ++c) {
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
}
}
}
image_output = std::move(padded_image);
}
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
* @param original_size The original size of the image in the format (width, height).
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
* @return The best fit resolution in the format (width, height).
*/
static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
int original_width = original_size.first;
int original_height = original_size.second;
std::pair<int, int> best_fit;
int max_effective_resolution = 0;
int min_wasted_resolution = std::numeric_limits<int>::max();
for (const auto& resolution : possible_resolutions) {
int width = resolution.first;
int height = resolution.second;
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
int downscaled_width = static_cast<int>(original_width * scale);
int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution;
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution;
best_fit = resolution;
}
}
return best_fit;
}
static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
std::vector<clip_image_u8*> patches;
int width = image.nx;
int height = image.ny;
for (int i = 0; i < height; i += patch_size) {
for (int j = 0; j < width; j += patch_size) {
clip_image_u8 *patch = clip_image_u8_init();
patch->nx = std::min(patch_size, width - j);
patch->ny = std::min(patch_size, height - i);
patch->buf.resize(3 * patch->nx * patch->ny);
for (int y = 0; y < patch->ny; ++y) {
for (int x = 0; x < patch->nx; ++x) {
for (int c = 0; c < 3; ++c) {
patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
}
}
}
patches.push_back(patch);
}
}
return patches;
}
static int ensure_divide(int length, int patch_size) {
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.first;
int height = original_size.second;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
int best_width = ensure_divide(width, patch_size);
int best_height = ensure_divide(height, patch_size);
return std::make_pair(best_width, best_height);
}
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width, height;
std::tie(width, height) = original_size;
int grid_x, grid_y;
std::tie(grid_x, grid_y) = grid;
int refine_width = ensure_divide(width, grid_x);
int refine_height = ensure_divide(height, grid_y);
int grid_width = refine_width / grid_x;
int grid_height = refine_height / grid_y;
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
int best_grid_width, best_grid_height;
std::tie(best_grid_width, best_grid_height) = best_grid_size;
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
return refine_size;
}
inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {
if (i == 1 || i > max_slice_nums) {
continue;
}
candidate_split_grids_nums.push_back(i);
}
std::vector<std::pair<int, int>> candidate_grids;
for (int split_grids_nums : candidate_split_grids_nums) {
int m = 1;
while (m <= split_grids_nums) {
if (split_grids_nums % m == 0) {
candidate_grids.emplace_back(m, split_grids_nums / m);
}
++m;
}
}
std::pair<int, int> best_grid{1, 1};
float min_error = std::numeric_limits<float>::infinity();
for (const auto& grid : candidate_grids) {
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
if (error < min_error) {
best_grid = grid;
min_error = error;
}
}
return best_grid;
}
// inspired from LLaVA-UHD:
// -> https://arxiv.org/pdf/2403.11703
// -> https://github.com/thunlp/LLaVA-UHD
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
const std::pair<int, int> original_size={img->nx,img->ny};
const int original_width = img->nx;
const int original_height = img->ny;
const float log_ratio = log(1.0*original_width/original_height);
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::vector<std::vector<clip_image_u8 *>> images;
LOG_TEE("%s: multiple %d\n", __func__, multiple);
images.push_back(std::vector<clip_image_u8 *>());
if (multiple <= 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
clip_image_u8 * source_image = clip_image_u8_init();
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
images[images.size()-1].push_back(source_image);
}
else if (multiple > 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
clip_image_u8 * source_image = clip_image_u8_init();
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
images[images.size()-1].push_back(source_image);
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
clip_image_u8 * refine_image = clip_image_u8_init();
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
// split_to_patches
int width = refine_image->nx;
int height = refine_image->ny;
int grid_x = int(width / best_grid.first);
int grid_y = int(height / best_grid.second);
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
images.push_back(std::vector<clip_image_u8 *>());
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
clip_image_u8 * patch = clip_image_u8_init();
patch->nx = grid_x;
patch->ny = grid_y;
patch->buf.resize(3 * patch->nx * patch->ny);
for (int y = patches_i; y < patches_i + grid_y; ++y) {
for (int x = patches_j; x < patches_j + grid_x; ++x) {
const int i = 3 * (y * refine_image->nx + x);
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
patch->buf[j] = refine_image->buf[i];
patch->buf[j+1] = refine_image->buf[i+1];
patch->buf[j+2] = refine_image->buf[i+2];
}
}
images[images.size()-1].push_back(patch);
}
}
}
return images;
}
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
const int max_slice_nums=9;
const int scale_resolution=448;
const int original_width = ctx_clip->load_image_size->width;
const int original_height = ctx_clip->load_image_size->height;
const float log_ratio = log(1.0*original_width/original_height);
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
return best_grid.first;
}
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
if (clip_is_minicpmv(ctx)) {
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
res_imgs->size = 0;
for (size_t i = 0; i < imgs.size(); ++i) {
res_imgs->size += imgs[i].size();
}
res_imgs->data = new clip_image_f32[res_imgs->size];
int idx = 0;
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
clip_image_f32 * res = clip_image_f32_init();
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
res_imgs->data[idx++] = *res;
clip_image_f32_free(res);
}
}
return true;
}
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
return false;
}
auto & params = ctx->vision_model.hparams;
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
pad_to_square = false;
}
// free the previous res_imgs if any set
if (res_imgs->size > 0) {
clip_image_f32_batch_free(res_imgs);
}
res_imgs->data = nullptr;
res_imgs->size = 0;
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
if (pad_to_square && img->nx != img->ny) {
int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
temp->ny = longer_side;
temp->buf.resize(3 * longer_side * longer_side);
const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
// fill with background color
for (size_t i = 0; i < temp->buf.size(); i++) {
temp->buf[i] = bc[i % 3];
}
// copy from the input image
for (int y = 0; y < img->ny; y++) {
for (int x = 0; x < img->nx; x++) {
const int i = 3 * (y * img->nx + x);
const int j = 3 * (y * temp->nx + x);
temp->buf[j] = img->buf[i];
temp->buf[j+1] = img->buf[i+1];
temp->buf[j+2] = img->buf[i+2];
}
}
} else {
if (params.image_grid_pinpoints[0] != 0) {
// "spatial_unpad" with "anyres" processing for llava-1.6
std::vector<std::pair<int, int>> possible_resolutions;
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
// clip_image_save_to_bmp(*img, "input.bmp");
resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
// clip_image_save_to_bmp(*temp, "resized.bmp");
// visually verify normalized image:
// normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
// {
// clip_image_u8 * temp2 = clip_image_u8_init();
// clip_image_convert_f32_to_u8(*res, *temp2);
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
// clip_image_u8_free(temp2);
// }
std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
clip_image_u8 *image_original_resize = clip_image_u8_init();
// bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
patches.insert(patches.begin(), image_original_resize);
// clip_image_f32_batch_init(patches.size());
res_imgs->size = patches.size();
res_imgs->data = new clip_image_f32[res_imgs->size];
int num=0;
for (auto& patch : patches) {
normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
num++;
}
for (size_t i = 0; i < patches.size(); i++) {
// LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
clip_image_u8_free(patches[i]);
}
clip_image_u8_free(temp);
return true;
} else {
temp->nx = img->nx;
temp->ny = img->ny;
temp->buf.resize(img->buf.size());
memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
}
}
const int nx = temp->nx;
const int ny = temp->ny;
// clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
const int nx2 = ctx->vision_model.hparams.image_size;
const int ny2 = ctx->vision_model.hparams.image_size;
clip_image_f32 * res = clip_image_f32_init();
res->nx = nx2;
res->ny = ny2;
res->buf.resize(3 * nx2 * ny2);
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
const int nx3 = int(nx / scale + 0.5f);
const int ny3 = int(ny / scale + 0.5f);
const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
for (int y = 0; y < ny3; y++) {
for (int x = 0; x < nx3; x++) {
for (int c = 0; c < 3; c++) {
// linear interpolation
const float sx = (x + 0.5f) * scale - 0.5f;
const float sy = (y + 0.5f) * scale - 0.5f;
const int x0 = std::max(0, (int)std::floor(sx));
const int y0 = std::max(0, (int)std::floor(sy));
const int x1 = std::min(x0 + 1, nx - 1);
const int y1 = std::min(y0 + 1, ny - 1);
const float dx = sx - x0;
const float dy = sy - y0;
const int j00 = 3 * (y0 * nx + x0) + c;
const int j01 = 3 * (y0 * nx + x1) + c;
const int j10 = 3 * (y1 * nx + x0) + c;
const int j11 = 3 * (y1 * nx + x1) + c;
const float v00 = temp->buf[j00];
const float v01 = temp->buf[j01];
const float v10 = temp->buf[j10];
const float v11 = temp->buf[j11];
const float v0 = v00 * (1.0f - dx) + v01 * dx;
const float v1 = v10 * (1.0f - dx) + v11 * dx;
const float v = v0 * (1.0f - dy) + v1 * dy;
const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
const int i = 3 * (y * nx3 + x) + c;
res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
}
}
}
clip_image_u8_free(temp);
// {
// clip_image_u8 * temp2 = clip_image_u8_init();
// clip_image_convert_f32_to_u8(*res, *temp2);
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
// clip_image_u8_free(temp2);
// }
// res_imgs.push_back(res);
res_imgs->size = 1;
res_imgs->data = new clip_image_f32[res_imgs->size];
res_imgs->data[0] = *res;
clip_image_f32_free(res);
return true;
}
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
return ctx->vision_model.image_newline;
}
void clip_free(clip_ctx * ctx) {
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
ggml_backend_buffer_free(ctx->params_buffer);
ggml_backend_free(ctx->backend);
ggml_gallocr_free(ctx->compute_alloc);
delete ctx;
}
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
}
int32_t clip_image_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_size;
}
int32_t clip_patch_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.patch_size;
}
int32_t clip_hidden_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.hidden_size;
}
const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.mm_patch_merge_type;
}
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints;
}
int clip_n_patches(const struct clip_ctx * ctx) {
const auto & params = ctx->vision_model.hparams;
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
n_patches /= 4;
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
n_patches = 96;
}
return n_patches;
}
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
assert(embed_dim % 2 == 0);
int H = pos.size();
int W = pos[0].size();
std::vector<float> omega(embed_dim / 2);
for (int i = 0; i < embed_dim / 2; ++i) {
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
}
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
float out_value = pos[h][w] * omega[d];
emb[h][w][d] = sin(out_value);
emb[h][w][d + embed_dim / 2] = cos(out_value);
}
}
}
return emb;
}
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
assert(embed_dim % 2 == 0);
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
int H = emb_h.size();
int W = emb_h[0].size();
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
emb[h][w][d] = emb_h[h][w][d];
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
}
}
}
return emb;
}
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
int grid_h_size = image_size.first;
int grid_w_size = image_size.second;
std::vector<float> grid_h(grid_h_size);
std::vector<float> grid_w(grid_w_size);
for (int i = 0; i < grid_h_size; ++i) {
grid_h[i] = static_cast<float>(i);
}
for (int i = 0; i < grid_w_size; ++i) {
grid_w[i] = static_cast<float>(i);
}
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid[h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid_2d[0][h][w] = grid_h[h];
grid_2d[1][h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
int H = image_size.first;
int W = image_size.second;
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
}
}
return pos_embed_2d;
}
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
return false;
}
clip_image_f32_batch imgs{};
imgs.size = 1;
imgs.data = img;
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
if (!ctx->has_vision_encoder) {
LOG_TEE("This gguf file seems to have no vision encoder\n");
return false;
}
int batch_size = imgs->size;
if (ctx->has_llava_projector) {
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
}
if (ctx->has_minicpmv_projector) {
GGML_ASSERT(batch_size == 1);
}
// build the inference graph
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
// set inputs
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
if (ctx->has_minicpmv_projector) {
image_size_width = imgs->data[0].nx;
image_size_height = imgs->data[0].ny;
}
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
{
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
float * data = (float *)malloc(ggml_nbytes(inp_raw));
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
const int ny = imgs->data[i].ny;
if (!ctx->has_minicpmv_projector) {
GGML_ASSERT(nx == image_size && ny == image_size);
}
const int n = nx * ny;
for (int b = 0; b < batch_size; b++) {
for (int k = 0; k < 3; k++) {
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
}
}
}
}
}
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
free(data);
}
if (ctx->has_minicpmv_projector) {
{
// inspired from siglip:
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
int* positions_data = (int*)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
positions_data[i] = std::floor(70.0*i/num_positions);
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
{
// inspired from resampler of Qwen-VL:
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
if(ctx->load_image_size==nullptr){
ctx->load_image_size= clip_image_size_init();
}
int pos_w = ctx->load_image_size->width/patch_size;
int pos_h = ctx->load_image_size->height/patch_size;
int embed_dim = 4096;
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
for(int i=0;i<pos_w * pos_h;++i){
for(int j=0;j<embed_dim;++j){
pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
}
}
ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
free(pos_embed_data);
}
} else {
{
if (ctx->has_class_embedding) {
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
void* zero_mem = malloc(ggml_nbytes(embeddings));
memset(zero_mem, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
free(zero_mem);
}
}
{
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
int* positions_data = (int*)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
{
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
}
}
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(ctx->backend)) {
ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
}
#endif
ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
ggml_type type = GGML_TYPE_Q4_1;
assert(itype < GGML_TYPE_COUNT);
type = static_cast<ggml_type>(itype);
auto * ctx_clip = clip_model_load(fname_inp, 2);
const auto & ctx_src = ctx_clip->ctx_gguf;
const auto & ctx_data = ctx_clip->ctx_data;
auto * ctx_out = gguf_init_empty();
gguf_set_kv(ctx_out, ctx_src);
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
gguf_set_val_u32(ctx_out, "general.file_type", itype);
auto fout = std::ofstream(fname_out, std::ios::binary);
const int n_tensors = gguf_get_n_tensors(ctx_src);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx_src, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
gguf_add_tensor(ctx_out, cur);
}
const size_t meta_size = gguf_get_meta_size(ctx_out);
for (size_t i = 0; i < meta_size; ++i) {
fout.put(0);
}
// regexes of tensor names to be quantized
const std::vector<std::string> k_names = {
".*weight",
};
std::vector<uint8_t> work(512);
std::vector<float> conv_buf(512);
size_t total_size_org = 0;
size_t total_size_new = 0;
for (int i = 0; i < n_tensors; ++i) {
const std::string name = gguf_get_tensor_name(ctx_src, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
enum ggml_type new_type;
void * new_data;
size_t new_size;
bool quantize = false;
for (const auto & s : k_names) {
if (std::regex_match(name, std::regex(s))) {
quantize = true;
break;
}
}
// quantize only 2D tensors
quantize &= (ggml_n_dims(cur) == 2);
if (quantize) {
new_type = type;
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
// LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
}
const size_t n_elms = ggml_nelements(cur);
float * f32_data;
switch (cur->type) {
case GGML_TYPE_F32:
f32_data = (float *)cur->data;
break;
case GGML_TYPE_F16:
if (conv_buf.size() < n_elms) {
conv_buf.resize(n_elms);
}
for (size_t j = 0; j < n_elms; ++j) {
conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
}
f32_data = (float *)conv_buf.data();
break;
default:
LOG_TEE("Please use an input file in f32 or f16\n");
gguf_free(ctx_out);
return false;
}
if (work.size() < n_elms * 4) {
work.resize(n_elms * 4);
}
new_data = work.data();
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
} else {
new_type = cur->type;
new_data = cur->data;
new_size = ggml_nbytes(cur);
}
const size_t orig_size = ggml_nbytes(cur);
total_size_org += orig_size;
total_size_new += new_size;
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
fout.write((const char *)new_data, new_size);
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
for (size_t j = 0; j < pad; ++j) {
fout.put(0);
}
LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
}
// go back to beginning of file and write the updated metadata
fout.seekp(0, std::ios::beg);
std::vector<uint8_t> meta(meta_size);
gguf_get_meta_data(ctx_out, meta.data());
fout.write((const char *)meta.data(), meta_size);
fout.close();
clip_free(ctx_clip);
gguf_free(ctx_out);
{
LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
}
return true;
}
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
return ctx->vision_model.mm_model_peg_0_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
return ctx->vision_model.mm_2_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
return ctx->vision_model.mm_3_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
return 4096;
}
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
}
bool clip_is_minicpmv(const struct clip_ctx * ctx) {
return ctx->has_minicpmv_projector;
}