mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 18:51:45 +00:00
334 lines
14 KiB
Python
334 lines
14 KiB
Python
import argparse
|
|
import os
|
|
import json
|
|
import re
|
|
|
|
import torch
|
|
import numpy as np
|
|
from gguf import *
|
|
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
|
|
|
|
TEXT = "clip.text"
|
|
VISION = "clip.vision"
|
|
|
|
|
|
def k(raw_key: str, arch: str) -> str:
|
|
return raw_key.format(arch=arch)
|
|
|
|
|
|
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
|
|
if name in (
|
|
"logit_scale",
|
|
"text_model.embeddings.position_ids",
|
|
"vision_model.embeddings.position_ids",
|
|
):
|
|
return True
|
|
|
|
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
|
|
return True
|
|
|
|
if name.startswith("v") and not has_vision:
|
|
return True
|
|
|
|
if name.startswith("t") and not has_text:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def get_tensor_name(name: str) -> str:
|
|
if "projection" in name:
|
|
return name
|
|
if "mm_projector" in name:
|
|
name = name.replace("model.mm_projector", "mm")
|
|
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
|
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
|
return name
|
|
|
|
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
|
|
|
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = (
|
|
list(range(ord("!"), ord("~") + 1))
|
|
+ list(range(ord("¡"), ord("¬") + 1))
|
|
+ list(range(ord("®"), ord("ÿ") + 1))
|
|
)
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8 + n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
|
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
|
ap.add_argument("--text-only", action="store_true", required=False,
|
|
help="Save a text-only model. It can't be used to encode images")
|
|
ap.add_argument("--vision-only", action="store_true", required=False,
|
|
help="Save a vision-only model. It can't be used to encode texts")
|
|
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
|
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
|
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
|
help="The clip model is from openclip (for ViT-SO400M type))")
|
|
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
|
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
|
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
|
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
|
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
|
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
|
|
|
# with proper
|
|
args = ap.parse_args()
|
|
|
|
|
|
if args.text_only and args.vision_only:
|
|
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
|
exit(1)
|
|
|
|
if args.use_f32:
|
|
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
|
|
|
# output in the same directory as the model if output_dir is None
|
|
dir_model = args.model_dir
|
|
|
|
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
|
vocab = None
|
|
tokens = None
|
|
else:
|
|
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
|
vocab = json.load(f)
|
|
tokens = [key for key in vocab]
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
config = json.load(f)
|
|
if args.clip_model_is_vision:
|
|
v_hparams = config
|
|
t_hparams = None
|
|
else:
|
|
v_hparams = config["vision_config"]
|
|
t_hparams = config["text_config"]
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
ftype = 1
|
|
if args.use_f32:
|
|
ftype = 0
|
|
|
|
if args.clip_model_is_vision or args.clip_model_is_openclip:
|
|
model = CLIPVisionModel.from_pretrained(dir_model)
|
|
processor = None
|
|
else:
|
|
model = CLIPModel.from_pretrained(dir_model)
|
|
processor = CLIPProcessor.from_pretrained(dir_model)
|
|
|
|
fname_middle = None
|
|
has_text_encoder = True
|
|
has_vision_encoder = True
|
|
has_llava_projector = False
|
|
if args.text_only:
|
|
fname_middle = "text-"
|
|
has_vision_encoder = False
|
|
elif args.llava_projector is not None:
|
|
fname_middle = "mmproj-"
|
|
has_text_encoder = False
|
|
has_llava_projector = True
|
|
elif args.vision_only:
|
|
fname_middle = "vision-"
|
|
has_text_encoder = False
|
|
else:
|
|
fname_middle = ""
|
|
|
|
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
|
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
|
fout = GGUFWriter(path=fname_out, arch="clip")
|
|
|
|
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
|
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
|
fout.add_bool("clip.has_llava_projector", has_llava_projector)
|
|
fout.add_file_type(ftype)
|
|
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
|
|
fout.add_name(model_name)
|
|
if args.text_only:
|
|
fout.add_description("text-only CLIP model")
|
|
elif args.vision_only and not has_llava_projector:
|
|
fout.add_description("vision-only CLIP model")
|
|
elif has_llava_projector:
|
|
fout.add_description("image encoder for LLaVA")
|
|
# add projector type
|
|
fout.add_string("clip.projector_type", args.projector_type)
|
|
else:
|
|
fout.add_description("two-tower CLIP model")
|
|
|
|
if has_text_encoder:
|
|
assert t_hparams is not None
|
|
assert tokens is not None
|
|
# text_model hparams
|
|
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
|
|
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
|
|
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
|
|
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
|
|
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
|
|
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
|
|
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
|
|
fout.add_token_list(tokens)
|
|
|
|
if has_vision_encoder:
|
|
# vision_model hparams
|
|
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
|
|
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
|
|
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
|
|
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
|
|
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
|
|
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
|
|
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
|
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
|
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
|
# /**
|
|
# "image_grid_pinpoints": [
|
|
# [
|
|
# 336,
|
|
# 672
|
|
# ],
|
|
# [
|
|
# 672,
|
|
# 336
|
|
# ],
|
|
# [
|
|
# 672,
|
|
# 672
|
|
# ],
|
|
# [
|
|
# 1008,
|
|
# 336
|
|
# ],
|
|
# [
|
|
# 336,
|
|
# 1008
|
|
# ]
|
|
# ],
|
|
# Flattened:
|
|
# [
|
|
# 336, 672,
|
|
# 672, 336,
|
|
# 672, 672,
|
|
# 1008, 336,
|
|
# 336, 1008
|
|
# ]
|
|
# *
|
|
# */
|
|
if "image_grid_pinpoints" in v_hparams:
|
|
# flatten it
|
|
image_grid_pinpoints = []
|
|
for pinpoint in v_hparams["image_grid_pinpoints"]:
|
|
for p in pinpoint:
|
|
image_grid_pinpoints.append(p)
|
|
fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints)
|
|
if "image_crop_resolution" in v_hparams:
|
|
fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"])
|
|
if "image_aspect_ratio" in v_hparams:
|
|
fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"])
|
|
if "image_split_resolution" in v_hparams:
|
|
fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"])
|
|
if "mm_patch_merge_type" in v_hparams:
|
|
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
|
|
if "mm_projector_type" in v_hparams:
|
|
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
|
|
|
|
|
|
if processor is not None:
|
|
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
|
|
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue]
|
|
else:
|
|
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
|
|
image_std = args.image_std if args.image_std is not None else default_image_std
|
|
fout.add_array("clip.vision.image_mean", image_mean)
|
|
fout.add_array("clip.vision.image_std", image_std)
|
|
|
|
use_gelu = v_hparams["hidden_act"] == "gelu"
|
|
fout.add_bool("clip.use_gelu", use_gelu)
|
|
|
|
|
|
if has_llava_projector:
|
|
model.vision_model.encoder.layers.pop(-1)
|
|
projector = torch.load(args.llava_projector)
|
|
for name, data in projector.items():
|
|
name = get_tensor_name(name)
|
|
# pw and dw conv ndim==4
|
|
if data.ndim == 2 or data.ndim == 4:
|
|
data = data.squeeze().numpy().astype(np.float16)
|
|
else:
|
|
data = data.squeeze().numpy().astype(np.float32)
|
|
|
|
fout.add_tensor(name, data)
|
|
|
|
print("Projector tensors added\n")
|
|
|
|
state_dict = model.state_dict()
|
|
for name, data in state_dict.items():
|
|
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
|
|
# we don't need this
|
|
print(f"skipping parameter: {name}")
|
|
continue
|
|
|
|
name = get_tensor_name(name)
|
|
data = data.squeeze().numpy()
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype_cur = 0
|
|
if n_dims == 4:
|
|
print(f"tensor {name} is always saved in f16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
elif ftype == 1:
|
|
if name[-7:] == ".weight" and n_dims == 2:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
else:
|
|
if data.dtype != np.float32:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
|
fout.add_tensor(name, data)
|
|
|
|
|
|
fout.write_header_to_file()
|
|
fout.write_kv_data_to_file()
|
|
fout.write_tensors_to_file()
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fname_out)
|