mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 02:31:46 +00:00
1927378bcc
* convert : refactor rope_freqs generation This should also fix vocab-only conversion for Phi-3. * convert : adapt MiniCPM3 to separate rope_freqs insertion MiniCPM3's tokenizer is treated as a SentencePiece tokenizer to avoid having to run its custom Python code which mixes tokenization in the same file as tool calls. gguf-py : add long and short RoPE factors to tensor mappings Empty, but the key names are used to populate the mappings.
404 lines
15 KiB
Python
Executable File
404 lines
15 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass
|
|
import logging
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import json
|
|
from math import prod
|
|
from pathlib import Path
|
|
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
|
|
|
|
import torch
|
|
|
|
if TYPE_CHECKING:
|
|
from torch import Tensor
|
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
|
import gguf
|
|
|
|
# reuse model definitions from convert_hf_to_gguf.py
|
|
from convert_hf_to_gguf import LazyTorchTensor, Model
|
|
|
|
logger = logging.getLogger("lora-to-gguf")
|
|
|
|
|
|
@dataclass
|
|
class PartialLoraTensor:
|
|
A: Tensor | None = None
|
|
B: Tensor | None = None
|
|
|
|
|
|
# magic to support tensor shape modifications and splitting
|
|
class LoraTorchTensor:
|
|
_lora_A: Tensor # (n_rank, row_size)
|
|
_lora_B: Tensor # (col_size, n_rank)
|
|
_rank: int
|
|
|
|
def __init__(self, A: Tensor, B: Tensor):
|
|
assert len(A.shape) == len(B.shape)
|
|
assert A.shape[-2] == B.shape[-1]
|
|
if A.dtype != B.dtype:
|
|
A = A.to(torch.float32)
|
|
B = B.to(torch.float32)
|
|
self._lora_A = A
|
|
self._lora_B = B
|
|
self._rank = B.shape[-1]
|
|
|
|
def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
|
|
return (self._lora_A, self._lora_B)
|
|
|
|
def __getitem__(
|
|
self,
|
|
indices: (
|
|
SupportsIndex
|
|
| slice
|
|
| tuple[SupportsIndex | slice | Tensor, ...] # TODO: add ellipsis in the type signature
|
|
),
|
|
) -> LoraTorchTensor:
|
|
shape = self.shape
|
|
if isinstance(indices, SupportsIndex):
|
|
if len(shape) > 2:
|
|
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
|
else:
|
|
raise NotImplementedError # can't return a vector
|
|
elif isinstance(indices, slice):
|
|
if len(shape) > 2:
|
|
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
|
else:
|
|
return LoraTorchTensor(self._lora_A, self._lora_B[indices])
|
|
elif isinstance(indices, tuple):
|
|
assert len(indices) > 0
|
|
if indices[-1] is Ellipsis:
|
|
return self[indices[:-1]]
|
|
# expand ellipsis
|
|
indices = tuple(
|
|
u
|
|
for v in (
|
|
(
|
|
(slice(None, None) for _ in range(len(indices) - 1))
|
|
if i is Ellipsis
|
|
else (i,)
|
|
)
|
|
for i in indices
|
|
)
|
|
for u in v
|
|
)
|
|
|
|
if len(indices) < len(shape):
|
|
indices = (*indices, *(slice(None, None) for _ in range(len(indices), len(shape))))
|
|
|
|
# TODO: make sure this is correct
|
|
indices_A = (
|
|
*(
|
|
(
|
|
j.__index__() % self._lora_A.shape[i]
|
|
if isinstance(j, SupportsIndex)
|
|
else slice(None, None)
|
|
)
|
|
for i, j in enumerate(indices[:-2])
|
|
),
|
|
slice(None, None),
|
|
indices[-1],
|
|
)
|
|
indices_B = indices[:-1]
|
|
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
|
|
else:
|
|
raise NotImplementedError # unknown indice type
|
|
|
|
@property
|
|
def dtype(self) -> torch.dtype:
|
|
assert self._lora_A.dtype == self._lora_B.dtype
|
|
return self._lora_A.dtype
|
|
|
|
@property
|
|
def shape(self) -> tuple[int, ...]:
|
|
assert len(self._lora_A.shape) == len(self._lora_B.shape)
|
|
return (*self._lora_B.shape[:-1], self._lora_A.shape[-1])
|
|
|
|
def size(self, dim=None):
|
|
assert dim is None
|
|
return self.shape
|
|
|
|
def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
|
|
if isinstance(shape[0], tuple):
|
|
new_shape: tuple[int, ...] = shape[0]
|
|
else:
|
|
new_shape = cast(tuple[int, ...], shape)
|
|
orig_shape = self.shape
|
|
if len(new_shape) < 2:
|
|
raise NotImplementedError # can't become a vector
|
|
|
|
# expand -1 in the shape
|
|
if any(dim == -1 for dim in new_shape):
|
|
n_elems = prod(orig_shape)
|
|
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
|
|
assert n_elems % n_new_elems == 0
|
|
new_shape = (*(dim if dim != -1 else n_elems // n_new_elems for dim in new_shape),)
|
|
|
|
if new_shape[-1] != orig_shape[-1]:
|
|
raise NotImplementedError # can't reshape the row size trivially
|
|
|
|
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
|
|
shape_B = (*new_shape[:-1], self._rank)
|
|
return LoraTorchTensor(
|
|
self._lora_A.reshape(shape_A),
|
|
self._lora_B.reshape(shape_B),
|
|
)
|
|
|
|
def reshape_as(self, other: Tensor) -> LoraTorchTensor:
|
|
return self.reshape(*other.shape)
|
|
|
|
def view(self, *size: int) -> LoraTorchTensor:
|
|
return self.reshape(*size)
|
|
|
|
def permute(self, *dims: int) -> LoraTorchTensor:
|
|
shape = self.shape
|
|
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
|
|
if dims[-1] == -1:
|
|
# TODO: support higher dimensional A shapes bigger than 1
|
|
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
|
|
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
|
|
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
|
|
return LoraTorchTensor(self._lora_B.permute(*dims), self._lora_A.permute(*dims))
|
|
else:
|
|
# TODO: compose the above two
|
|
raise NotImplementedError
|
|
|
|
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
|
|
shape = self.shape
|
|
dims = [i for i in range(len(shape))]
|
|
dims[dim0], dims[dim1] = dims[dim1], dims[dim0]
|
|
return self.permute(*dims)
|
|
|
|
def swapaxes(self, axis0: int, axis1: int) -> LoraTorchTensor:
|
|
return self.transpose(axis0, axis1)
|
|
|
|
def to(self, *args, **kwargs):
|
|
return LoraTorchTensor(self._lora_A.to(*args, **kwargs), self._lora_B.to(*args, **kwargs))
|
|
|
|
@classmethod
|
|
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
|
|
del types # unused
|
|
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
|
|
if func is torch.permute:
|
|
return type(args[0]).permute(*args, **kwargs)
|
|
elif func is torch.reshape:
|
|
return type(args[0]).reshape(*args, **kwargs)
|
|
elif func is torch.stack:
|
|
assert isinstance(args[0], Sequence)
|
|
dim = kwargs.get("dim", 0)
|
|
assert dim == 0
|
|
return LoraTorchTensor(
|
|
torch.stack([a._lora_A for a in args[0]], dim),
|
|
torch.stack([b._lora_B for b in args[0]], dim),
|
|
)
|
|
elif func is torch.cat:
|
|
assert isinstance(args[0], Sequence)
|
|
dim = kwargs.get("dim", 0)
|
|
assert dim == 0
|
|
if len(args[0][0].shape) > 2:
|
|
return LoraTorchTensor(
|
|
torch.cat([a._lora_A for a in args[0]], dim),
|
|
torch.cat([b._lora_B for b in args[0]], dim),
|
|
)
|
|
elif all(torch.equal(args[0][0]._lora_A, t._lora_A) for t in args[0][1:]):
|
|
return LoraTorchTensor(
|
|
args[0][0]._lora_A,
|
|
torch.cat([b._lora_B for b in args[0]], dim),
|
|
)
|
|
else:
|
|
raise NotImplementedError
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
|
|
def get_base_tensor_name(lora_tensor_name: str) -> str:
|
|
base_name = lora_tensor_name.replace("base_model.model.", "")
|
|
base_name = base_name.replace(".lora_A.weight", ".weight")
|
|
base_name = base_name.replace(".lora_B.weight", ".weight")
|
|
return base_name
|
|
|
|
|
|
def parse_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser(
|
|
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
|
|
parser.add_argument(
|
|
"--outfile", type=Path,
|
|
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
|
)
|
|
parser.add_argument(
|
|
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
|
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
|
)
|
|
parser.add_argument(
|
|
"--bigendian", action="store_true",
|
|
help="model is executed on big endian machine",
|
|
)
|
|
parser.add_argument(
|
|
"--no-lazy", action="store_true",
|
|
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
|
|
)
|
|
parser.add_argument(
|
|
"--verbose", action="store_true",
|
|
help="increase output verbosity",
|
|
)
|
|
parser.add_argument(
|
|
"--dry-run", action="store_true",
|
|
help="only print out what will be done, without writing any new files",
|
|
)
|
|
parser.add_argument(
|
|
"--base", type=Path, required=True,
|
|
help="directory containing base model file",
|
|
)
|
|
parser.add_argument(
|
|
"lora_path", type=Path,
|
|
help="directory containing LoRA adapter file",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
|
|
|
ftype_map: dict[str, gguf.LlamaFileType] = {
|
|
"f32": gguf.LlamaFileType.ALL_F32,
|
|
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
|
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
|
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
|
"auto": gguf.LlamaFileType.GUESSED,
|
|
}
|
|
|
|
ftype = ftype_map[args.outtype]
|
|
|
|
dir_base_model: Path = args.base
|
|
dir_lora: Path = args.lora_path
|
|
lora_config = dir_lora / "adapter_config.json"
|
|
input_model = dir_lora / "adapter_model.safetensors"
|
|
|
|
if args.outfile is not None:
|
|
fname_out = args.outfile
|
|
else:
|
|
# output in the same directory as the model by default
|
|
fname_out = dir_lora
|
|
|
|
if os.path.exists(input_model):
|
|
# lazy import load_file only if lora is in safetensors format.
|
|
from safetensors.torch import load_file
|
|
|
|
lora_model = load_file(input_model, device="cpu")
|
|
else:
|
|
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
|
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
|
|
|
|
# load base model
|
|
logger.info(f"Loading base model: {dir_base_model.name}")
|
|
hparams = Model.load_hparams(dir_base_model)
|
|
with torch.inference_mode():
|
|
try:
|
|
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
|
except NotImplementedError:
|
|
logger.error(f"Model {hparams['architectures'][0]} is not supported")
|
|
sys.exit(1)
|
|
|
|
class LoraModel(model_class):
|
|
model_arch = model_class.model_arch
|
|
|
|
lora_alpha: float
|
|
|
|
def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.dir_model_card = dir_lora_model
|
|
self.lora_alpha = float(lora_alpha)
|
|
|
|
def set_type(self):
|
|
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
|
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
|
|
|
def set_gguf_parameters(self):
|
|
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
|
super().set_gguf_parameters()
|
|
|
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
|
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
|
|
return ()
|
|
|
|
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
|
tensor_map: dict[str, PartialLoraTensor] = {}
|
|
|
|
for name, tensor in lora_model.items():
|
|
if self.lazy:
|
|
tensor = LazyTorchTensor.from_eager(tensor)
|
|
base_name = get_base_tensor_name(name)
|
|
is_lora_a = ".lora_A.weight" in name
|
|
is_lora_b = ".lora_B.weight" in name
|
|
if not is_lora_a and not is_lora_b:
|
|
if ".base_layer.weight" in name:
|
|
continue
|
|
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
|
sys.exit(1)
|
|
|
|
if base_name in tensor_map:
|
|
if is_lora_a:
|
|
tensor_map[base_name].A = tensor
|
|
else:
|
|
tensor_map[base_name].B = tensor
|
|
else:
|
|
if is_lora_a:
|
|
tensor_map[base_name] = PartialLoraTensor(A=tensor)
|
|
else:
|
|
tensor_map[base_name] = PartialLoraTensor(B=tensor)
|
|
|
|
for name, tensor in tensor_map.items():
|
|
assert tensor.A is not None
|
|
assert tensor.B is not None
|
|
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
|
|
|
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
|
dest = list(super().modify_tensors(data_torch, name, bid))
|
|
# some archs may have the same tensor for lm_head and output (tie word embeddings)
|
|
# in this case, adapters targeting lm_head will fail when using llama-export-lora
|
|
# therefore, we ignore them for now
|
|
# see: https://github.com/ggerganov/llama.cpp/issues/9065
|
|
if name == "lm_head.weight" and len(dest) == 0:
|
|
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
|
for dest_name, dest_data in dest:
|
|
assert isinstance(dest_data, LoraTorchTensor)
|
|
lora_a, lora_b = dest_data.get_lora_A_B()
|
|
|
|
yield (dest_name + ".lora_a", lora_a)
|
|
yield (dest_name + ".lora_b", lora_b)
|
|
|
|
with open(lora_config, "r") as f:
|
|
lparams: dict[str, Any] = json.load(f)
|
|
|
|
alpha: float = lparams["lora_alpha"]
|
|
|
|
model_instance = LoraModel(
|
|
dir_base_model,
|
|
ftype,
|
|
fname_out,
|
|
is_big_endian=args.bigendian,
|
|
use_temp_file=False,
|
|
eager=args.no_lazy,
|
|
dry_run=args.dry_run,
|
|
dir_lora_model=dir_lora,
|
|
lora_alpha=alpha,
|
|
)
|
|
|
|
logger.info("Exporting model...")
|
|
model_instance.write()
|
|
logger.info(f"Model successfully exported to {model_instance.fname_out}")
|