llama.cpp/gguf-py/gguf/constants.py
nopperl 9a913110cf
llama : add support for Chameleon (#8543)
* convert chameleon hf to gguf

* add chameleon tokenizer tests

* fix lint

* implement chameleon graph

* add swin norm param

* return qk norm weights and biases to original format

* implement swin norm

* suppress image token output

* rem tabs

* add comment to conversion

* fix ci

* check for k norm separately

* adapt to new lora implementation

* fix layer input for swin norm

* move swin_norm in gguf writer

* add comment regarding special token regex in chameleon pre-tokenizer

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix punctuation regex in chameleon pre-tokenizer (@compilade)

Co-authored-by: compilade <git@compilade.net>

* fix lint

* trigger ci

---------

Co-authored-by: compilade <git@compilade.net>
2024-09-28 15:08:43 +03:00

1583 lines
55 KiB
Python

from __future__ import annotations
from enum import Enum, IntEnum, auto
from typing import Any
#
# constants
#
GGUF_MAGIC = 0x46554747 # "GGUF"
GGUF_VERSION = 3
GGUF_DEFAULT_ALIGNMENT = 32
GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
#
# metadata keys
#
class Keys:
class General:
TYPE = "general.type"
ARCHITECTURE = "general.architecture"
QUANTIZATION_VERSION = "general.quantization_version"
ALIGNMENT = "general.alignment"
FILE_TYPE = "general.file_type"
# Authorship Metadata
NAME = "general.name"
AUTHOR = "general.author"
VERSION = "general.version"
ORGANIZATION = "general.organization"
FINETUNE = "general.finetune"
BASENAME = "general.basename"
DESCRIPTION = "general.description"
QUANTIZED_BY = "general.quantized_by"
SIZE_LABEL = "general.size_label"
# Licensing details
LICENSE = "general.license"
LICENSE_NAME = "general.license.name"
LICENSE_LINK = "general.license.link"
# Typically represents the converted GGUF repo (Unless native)
URL = "general.url" # Model Website/Paper
DOI = "general.doi"
UUID = "general.uuid"
REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
# Model Source during conversion
SOURCE_URL = "general.source.url" # Model Website/Paper
SOURCE_DOI = "general.source.doi"
SOURCE_UUID = "general.source.uuid"
SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
# Base Model Source. There can be more than one source if it's a merged
# model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
# tracing linage of models as it is finetuned or merged over time.
BASE_MODEL_COUNT = "general.base_model.count"
BASE_MODEL_NAME = "general.base_model.{id}.name"
BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
BASE_MODEL_VERSION = "general.base_model.{id}.version"
BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
BASE_MODEL_DOI = "general.base_model.{id}.doi"
BASE_MODEL_UUID = "general.base_model.{id}.uuid"
BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
# Array based KV stores
TAGS = "general.tags"
LANGUAGES = "general.languages"
DATASETS = "general.datasets"
class LLM:
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
BLOCK_COUNT = "{arch}.block_count"
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
SWIN_NORM = "{arch}.swin_norm"
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
RESIDUAL_SCALE = "{arch}.residual_scale"
EMBEDDING_SCALE = "{arch}.embedding_scale"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_LENGTH = "{arch}.attention.key_length"
VALUE_LENGTH = "{arch}.attention.value_length"
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
SLIDING_WINDOW = "{arch}.attention.sliding_window"
SCALE = "{arch}.attention.scale"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
FREQ_BASE = "{arch}.rope.freq_base"
SCALING_TYPE = "{arch}.rope.scaling.type"
SCALING_FACTOR = "{arch}.rope.scaling.factor"
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
class Split:
LLM_KV_SPLIT_NO = "split.no"
LLM_KV_SPLIT_COUNT = "split.count"
LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
class SSM:
CONV_KERNEL = "{arch}.ssm.conv_kernel"
INNER_SIZE = "{arch}.ssm.inner_size"
STATE_SIZE = "{arch}.ssm.state_size"
TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
class WKV:
HEAD_SIZE = "{arch}.wkv.head_size"
class Tokenizer:
MODEL = "tokenizer.ggml.model"
PRE = "tokenizer.ggml.pre"
LIST = "tokenizer.ggml.tokens"
TOKEN_TYPE = "tokenizer.ggml.token_type"
TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
SCORES = "tokenizer.ggml.scores"
MERGES = "tokenizer.ggml.merges"
BOS_ID = "tokenizer.ggml.bos_token_id"
EOS_ID = "tokenizer.ggml.eos_token_id"
UNK_ID = "tokenizer.ggml.unknown_token_id"
SEP_ID = "tokenizer.ggml.seperator_token_id"
PAD_ID = "tokenizer.ggml.padding_token_id"
CLS_ID = "tokenizer.ggml.cls_token_id"
MASK_ID = "tokenizer.ggml.mask_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
CHAT_TEMPLATES = "tokenizer.chat_templates"
# FIM/Infill special tokens constants
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
EOT_ID = "tokenizer.ggml.eot_token_id"
EOM_ID = "tokenizer.ggml.eom_token_id"
class Adapter:
TYPE = "adapter.type"
LORA_ALPHA = "adapter.lora.alpha"
#
# recommended mapping of model tensor names for storage in gguf
#
class GGUFType:
MODEL = "model"
ADAPTER = "adapter"
class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
BAICHUAN = auto()
GROK = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
STARCODER = auto()
REFACT = auto()
BERT = auto()
NOMIC_BERT = auto()
JINA_BERT_V2 = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
QWEN2 = auto()
QWEN2MOE = auto()
PHI2 = auto()
PHI3 = auto()
PLAMO = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
MINICPM = auto()
MINICPM3 = auto()
GEMMA = auto()
GEMMA2 = auto()
STARCODER2 = auto()
RWKV6 = auto()
MAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
DBRX = auto()
OLMO = auto()
OLMOE = auto()
OPENELM = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
CHATGLM = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
JAIS = auto()
NEMOTRON = auto()
EXAONE = auto()
GRANITE = auto()
GRANITE_MOE = auto()
CHAMELEON = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
TOKEN_EMBD_NORM = auto()
TOKEN_TYPES = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ROPE_FACTORS_LONG = auto()
ROPE_FACTORS_SHORT = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_OUT_NORM = auto()
ATTN_POST_NORM = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE_INP = auto()
FFN_GATE_INP_SHEXP = auto()
FFN_NORM = auto()
FFN_PRE_NORM = auto()
FFN_POST_NORM = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_ACT = auto()
FFN_NORM_EXP = auto()
FFN_GATE_EXP = auto()
FFN_DOWN_EXP = auto()
FFN_UP_EXP = auto()
FFN_GATE_SHEXP = auto()
FFN_DOWN_SHEXP = auto()
FFN_UP_SHEXP = auto()
ATTN_Q_NORM = auto()
ATTN_K_NORM = auto()
LAYER_OUT_NORM = auto()
SSM_IN = auto()
SSM_CONV1D = auto()
SSM_X = auto()
SSM_DT = auto()
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
TIME_MIX_W1 = auto()
TIME_MIX_W2 = auto()
TIME_MIX_LERP_X = auto()
TIME_MIX_LERP_K = auto()
TIME_MIX_LERP_V = auto()
TIME_MIX_LERP_R = auto()
TIME_MIX_LERP_G = auto()
TIME_MIX_LERP_W = auto()
TIME_MIX_FIRST = auto()
TIME_MIX_DECAY = auto()
TIME_MIX_DECAY_W1 = auto()
TIME_MIX_DECAY_W2 = auto()
TIME_MIX_KEY = auto()
TIME_MIX_VALUE = auto()
TIME_MIX_RECEPTANCE = auto()
TIME_MIX_GATE = auto()
TIME_MIX_LN = auto()
TIME_MIX_OUTPUT = auto()
CHANNEL_MIX_LERP_K = auto()
CHANNEL_MIX_LERP_R = auto()
CHANNEL_MIX_KEY = auto()
CHANNEL_MIX_RECEPTANCE = auto()
CHANNEL_MIX_VALUE = auto()
ATTN_Q_A = auto()
ATTN_Q_B = auto()
ATTN_KV_A_MQA = auto()
ATTN_KV_B = auto()
ATTN_Q_A_NORM = auto()
ATTN_KV_A_NORM = auto()
FFN_SUB_NORM = auto()
ATTN_SUB_NORM = auto()
DEC_ATTN_NORM = auto()
DEC_ATTN_Q = auto()
DEC_ATTN_K = auto()
DEC_ATTN_V = auto()
DEC_ATTN_OUT = auto()
DEC_ATTN_REL_B = auto()
DEC_CROSS_ATTN_NORM = auto()
DEC_CROSS_ATTN_Q = auto()
DEC_CROSS_ATTN_K = auto()
DEC_CROSS_ATTN_V = auto()
DEC_CROSS_ATTN_OUT = auto()
DEC_CROSS_ATTN_REL_B = auto()
DEC_FFN_NORM = auto()
DEC_FFN_GATE = auto()
DEC_FFN_DOWN = auto()
DEC_FFN_UP = auto()
DEC_OUTPUT_NORM = auto()
ENC_ATTN_NORM = auto()
ENC_ATTN_Q = auto()
ENC_ATTN_K = auto()
ENC_ATTN_V = auto()
ENC_ATTN_OUT = auto()
ENC_ATTN_REL_B = auto()
ENC_FFN_NORM = auto()
ENC_FFN_GATE = auto()
ENC_FFN_DOWN = auto()
ENC_FFN_UP = auto()
ENC_OUTPUT_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.BAICHUAN: "baichuan",
MODEL_ARCH.GROK: "grok",
MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt",
MODEL_ARCH.STARCODER: "starcoder",
MODEL_ARCH.REFACT: "refact",
MODEL_ARCH.BERT: "bert",
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
MODEL_ARCH.QWEN2: "qwen2",
MODEL_ARCH.QWEN2MOE: "qwen2moe",
MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion",
MODEL_ARCH.INTERNLM2: "internlm2",
MODEL_ARCH.MINICPM: "minicpm",
MODEL_ARCH.MINICPM3: "minicpm3",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.GEMMA2: "gemma2",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.RWKV6: "rwkv6",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.OLMOE: "olmoe",
MODEL_ARCH.OPENELM: "openelm",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
MODEL_ARCH.JAIS: "jais",
MODEL_ARCH.NEMOTRON: "nemotron",
MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.GRANITE: "granite",
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.CHAMELEON: "chameleon",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
MODEL_TENSOR.TOKEN_TYPES: "token_types",
MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1",
MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2",
MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key",
MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value",
MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance",
MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate",
MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln",
MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output",
MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k",
MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r",
MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key",
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance",
MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value",
MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.GROK: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.GPTNEOX: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.FALCON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BAICHUAN: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.STARCODER: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BERT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.NOMIC_BERT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.JINA_BERT_V2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.MPT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_ACT,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.POS_EMBD,
],
MODEL_ARCH.GPTJ: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.REFACT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BLOOM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.STABLELM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
],
MODEL_ARCH.QWEN: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN2MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_INP_SHEXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.PLAMO: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.PHI2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.PHI3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.CODESHELL: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.ORION: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.INTERNLM2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MINICPM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.MINICPM3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GEMMA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM,
],
MODEL_ARCH.GEMMA2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_PRE_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.STARCODER2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.RWKV6: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_LERP_X,
MODEL_TENSOR.TIME_MIX_LERP_K,
MODEL_TENSOR.TIME_MIX_LERP_V,
MODEL_TENSOR.TIME_MIX_LERP_R,
MODEL_TENSOR.TIME_MIX_LERP_G,
MODEL_TENSOR.TIME_MIX_LERP_W,
MODEL_TENSOR.TIME_MIX_FIRST,
MODEL_TENSOR.TIME_MIX_DECAY,
MODEL_TENSOR.TIME_MIX_DECAY_W1,
MODEL_TENSOR.TIME_MIX_DECAY_W2,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_GATE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.CHANNEL_MIX_LERP_K,
MODEL_TENSOR.CHANNEL_MIX_LERP_R,
MODEL_TENSOR.CHANNEL_MIX_KEY,
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
MODEL_TENSOR.CHANNEL_MIX_VALUE,
],
MODEL_ARCH.MAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.SSM_IN,
MODEL_TENSOR.SSM_CONV1D,
MODEL_TENSOR.SSM_X,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
],
MODEL_ARCH.XVERSE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.COMMAND_R: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
],
MODEL_ARCH.DBRX: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.OLMO: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OLMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
],
MODEL_ARCH.OPENELM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.ARCTIC: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM_EXP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.CHATGLM : [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_SUB_NORM,
MODEL_TENSOR.FFN_SUB_NORM,
],
MODEL_ARCH.T5: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.DEC_ATTN_NORM,
MODEL_TENSOR.DEC_ATTN_Q,
MODEL_TENSOR.DEC_ATTN_K,
MODEL_TENSOR.DEC_ATTN_V,
MODEL_TENSOR.DEC_ATTN_OUT,
MODEL_TENSOR.DEC_ATTN_REL_B,
MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
MODEL_TENSOR.DEC_CROSS_ATTN_Q,
MODEL_TENSOR.DEC_CROSS_ATTN_K,
MODEL_TENSOR.DEC_CROSS_ATTN_V,
MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
MODEL_TENSOR.DEC_FFN_NORM,
MODEL_TENSOR.DEC_FFN_GATE,
MODEL_TENSOR.DEC_FFN_DOWN,
MODEL_TENSOR.DEC_FFN_UP,
MODEL_TENSOR.DEC_OUTPUT_NORM,
MODEL_TENSOR.ENC_ATTN_NORM,
MODEL_TENSOR.ENC_ATTN_Q,
MODEL_TENSOR.ENC_ATTN_K,
MODEL_TENSOR.ENC_ATTN_V,
MODEL_TENSOR.ENC_ATTN_OUT,
MODEL_TENSOR.ENC_ATTN_REL_B,
MODEL_TENSOR.ENC_FFN_NORM,
MODEL_TENSOR.ENC_FFN_GATE,
MODEL_TENSOR.ENC_FFN_DOWN,
MODEL_TENSOR.ENC_FFN_UP,
MODEL_TENSOR.ENC_OUTPUT_NORM,
],
MODEL_ARCH.T5ENCODER: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ENC_ATTN_NORM,
MODEL_TENSOR.ENC_ATTN_Q,
MODEL_TENSOR.ENC_ATTN_K,
MODEL_TENSOR.ENC_ATTN_V,
MODEL_TENSOR.ENC_ATTN_OUT,
MODEL_TENSOR.ENC_ATTN_REL_B,
MODEL_TENSOR.ENC_FFN_NORM,
MODEL_TENSOR.ENC_FFN_GATE,
MODEL_TENSOR.ENC_FFN_DOWN,
MODEL_TENSOR.ENC_FFN_UP,
MODEL_TENSOR.ENC_OUTPUT_NORM,
],
MODEL_ARCH.JAIS: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.NEMOTRON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.EXAONE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GRANITE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GRANITE_MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.CHAMELEON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
# TODO
}
# tensors that will not be serialized
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.BAICHUAN: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.QWEN: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.CODESHELL: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.ORION: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.STARCODER2: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.XVERSE: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.CHATGLM: [
MODEL_TENSOR.ROPE_FREQS,
],
MODEL_ARCH.NEMOTRON: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
#
# types
#
class TokenType(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
class RopeScalingType(Enum):
NONE = 'none'
LINEAR = 'linear'
YARN = 'yarn'
class PoolingType(IntEnum):
NONE = 0
MEAN = 1
CLS = 2
class GGMLQuantizationType(IntEnum):
F32 = 0
F16 = 1
Q4_0 = 2
Q4_1 = 3
Q5_0 = 6
Q5_1 = 7
Q8_0 = 8
Q8_1 = 9
Q2_K = 10
Q3_K = 11
Q4_K = 12
Q5_K = 13
Q6_K = 14
Q8_K = 15
IQ2_XXS = 16
IQ2_XS = 17
IQ3_XXS = 18
IQ1_S = 19
IQ4_NL = 20
IQ3_S = 21
IQ2_S = 22
IQ4_XS = 23
I8 = 24
I16 = 25
I32 = 26
I64 = 27
F64 = 28
IQ1_M = 29
BF16 = 30
Q4_0_4_4 = 31
Q4_0_4_8 = 32
Q4_0_8_8 = 33
TQ1_0 = 34
TQ2_0 = 35
# TODO: add GGMLFileType from ggml_ftype in ggml.h
# from llama_ftype in llama.h
# ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
class LlamaFileType(IntEnum):
ALL_F32 = 0
MOSTLY_F16 = 1 # except 1d tensors
MOSTLY_Q4_0 = 2 # except 1d tensors
MOSTLY_Q4_1 = 3 # except 1d tensors
# MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
# MOSTLY_Q4_2 = 5 # support has been removed
# MOSTLY_Q4_3 = 6 # support has been removed
MOSTLY_Q8_0 = 7 # except 1d tensors
MOSTLY_Q5_0 = 8 # except 1d tensors
MOSTLY_Q5_1 = 9 # except 1d tensors
MOSTLY_Q2_K = 10 # except 1d tensors
MOSTLY_Q3_K_S = 11 # except 1d tensors
MOSTLY_Q3_K_M = 12 # except 1d tensors
MOSTLY_Q3_K_L = 13 # except 1d tensors
MOSTLY_Q4_K_S = 14 # except 1d tensors
MOSTLY_Q4_K_M = 15 # except 1d tensors
MOSTLY_Q5_K_S = 16 # except 1d tensors
MOSTLY_Q5_K_M = 17 # except 1d tensors
MOSTLY_Q6_K = 18 # except 1d tensors
MOSTLY_IQ2_XXS = 19 # except 1d tensors
MOSTLY_IQ2_XS = 20 # except 1d tensors
MOSTLY_Q2_K_S = 21 # except 1d tensors
MOSTLY_IQ3_XS = 22 # except 1d tensors
MOSTLY_IQ3_XXS = 23 # except 1d tensors
MOSTLY_IQ1_S = 24 # except 1d tensors
MOSTLY_IQ4_NL = 25 # except 1d tensors
MOSTLY_IQ3_S = 26 # except 1d tensors
MOSTLY_IQ3_M = 27 # except 1d tensors
MOSTLY_IQ2_S = 28 # except 1d tensors
MOSTLY_IQ2_M = 29 # except 1d tensors
MOSTLY_IQ4_XS = 30 # except 1d tensors
MOSTLY_IQ1_M = 31 # except 1d tensors
MOSTLY_BF16 = 32 # except 1d tensors
MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
MOSTLY_TQ1_0 = 36 # except 1d tensors
MOSTLY_TQ2_0 = 37 # except 1d tensors
GUESSED = 1024 # not specified in the model file
class GGUFEndian(IntEnum):
LITTLE = 0
BIG = 1
class GGUFValueType(IntEnum):
UINT8 = 0
INT8 = 1
UINT16 = 2
INT16 = 3
UINT32 = 4
INT32 = 5
FLOAT32 = 6
BOOL = 7
STRING = 8
ARRAY = 9
UINT64 = 10
INT64 = 11
FLOAT64 = 12
@staticmethod
def get_type(val: Any) -> GGUFValueType:
if isinstance(val, (str, bytes, bytearray)):
return GGUFValueType.STRING
elif isinstance(val, list):
return GGUFValueType.ARRAY
elif isinstance(val, float):
return GGUFValueType.FLOAT32
elif isinstance(val, bool):
return GGUFValueType.BOOL
elif isinstance(val, int):
return GGUFValueType.INT32
# TODO: need help with 64-bit types in Python
else:
raise ValueError(f"Unknown type: {type(val)}")
# Items here are (block size, type size)
QK_K = 256
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
GGMLQuantizationType.F32: (1, 4),
GGMLQuantizationType.F16: (1, 2),
GGMLQuantizationType.Q4_0: (32, 2 + 16),
GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
GGMLQuantizationType.Q8_0: (32, 2 + 32),
GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
GGMLQuantizationType.I8: (1, 1),
GGMLQuantizationType.I16: (1, 2),
GGMLQuantizationType.I32: (1, 4),
GGMLQuantizationType.I64: (1, 8),
GGMLQuantizationType.F64: (1, 8),
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
GGMLQuantizationType.BF16: (1, 2),
GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
GGMLQuantizationType.TQ2_0: (256, 2 + 64),
}
# Aliases for backward compatibility.
# general
KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
KEY_GENERAL_NAME = Keys.General.NAME
KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
KEY_GENERAL_URL = Keys.General.URL
KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
KEY_GENERAL_LICENSE = Keys.General.LICENSE
KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
# LLM
KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
# attention
KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
# RoPE
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
# SSM
KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
# tokenization
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID