mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
8c00b7a6ff
* sync : ggml (Metal F32 support + reduce ggml-alloc size) ggml-ci * llama-bench : fix ggml_cpu_has_metal() duplicate function ggml-ci
634 lines
22 KiB
C
634 lines
22 KiB
C
#include "ggml-alloc.h"
|
|
#include "ggml.h"
|
|
#include <assert.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef __has_include
|
|
#if __has_include(<unistd.h>)
|
|
#include <unistd.h>
|
|
#if defined(_POSIX_MAPPED_FILES)
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#include <memoryapi.h>
|
|
#endif
|
|
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
|
|
|
//#define GGML_ALLOCATOR_DEBUG
|
|
|
|
//#define AT_PRINTF printf
|
|
#define AT_PRINTF(...) ((void)0)
|
|
|
|
struct hash_node {
|
|
struct ggml_tensor * t;
|
|
int n_children;
|
|
int n_views;
|
|
};
|
|
|
|
static size_t hash(void * p) {
|
|
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
|
|
}
|
|
|
|
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
|
|
size_t h = hash(t);
|
|
|
|
// linear probing
|
|
size_t i = h;
|
|
while (hash_table[i].t != NULL) {
|
|
if (hash_table[i].t == t) {
|
|
return &hash_table[i];
|
|
}
|
|
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
|
|
if (i == h) {
|
|
// hash table is full
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
hash_table[i].t = t;
|
|
return &hash_table[i];
|
|
}
|
|
|
|
// TODO: GGML_PAD ?
|
|
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
|
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
|
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
|
return offset + align;
|
|
}
|
|
|
|
struct free_block {
|
|
void * addr;
|
|
size_t size;
|
|
};
|
|
|
|
#define MAX_FREE_BLOCKS 128
|
|
|
|
struct ggml_allocr {
|
|
void * data;
|
|
size_t size;
|
|
size_t alignment;
|
|
int n_free_blocks;
|
|
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
|
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
|
size_t max_size;
|
|
bool measure;
|
|
int parse_seq[GGML_MAX_CONCUR];
|
|
int parse_seq_len;
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
struct ggml_tensor * allocated_tensors[1024];
|
|
#endif
|
|
};
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
|
for (int i = 0; i < 1024; i++) {
|
|
if (alloc->allocated_tensors[i] == NULL) {
|
|
alloc->allocated_tensors[i] = tensor;
|
|
return;
|
|
}
|
|
}
|
|
GGML_ASSERT(!"out of allocated_tensors");
|
|
}
|
|
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
|
for (int i = 0; i < 1024; i++) {
|
|
if (alloc->allocated_tensors[i] == tensor ||
|
|
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
|
|
alloc->allocated_tensors[i] = NULL;
|
|
return;
|
|
}
|
|
}
|
|
printf("tried to free tensor %s not found\n", tensor->name);
|
|
GGML_ASSERT(!"tensor not found");
|
|
}
|
|
#endif
|
|
|
|
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
|
return ggml_nbytes(tensor);
|
|
|
|
UNUSED(alloc);
|
|
}
|
|
|
|
// check if a tensor is allocated by this buffer
|
|
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
|
|
void * ptr = tensor->data;
|
|
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
|
|
}
|
|
|
|
static bool ggml_is_view(struct ggml_tensor * t) {
|
|
return t->view_src != NULL;
|
|
}
|
|
|
|
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
|
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
|
#endif
|
|
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
|
size = aligned_offset(NULL, size, alloc->alignment);
|
|
|
|
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
|
|
|
size_t max_avail = 0;
|
|
|
|
// find the best fitting free block besides the last block
|
|
int best_fit_block = -1;
|
|
size_t best_fit_size = SIZE_MAX;
|
|
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
|
|
struct free_block * block = &alloc->free_blocks[i];
|
|
max_avail = MAX(max_avail, block->size);
|
|
if (block->size >= size && block->size <= best_fit_size) {
|
|
best_fit_block = i;
|
|
best_fit_size = block->size;
|
|
}
|
|
}
|
|
|
|
AT_PRINTF("block %d\n", best_fit_block);
|
|
|
|
if (best_fit_block == -1) {
|
|
// the last block is our last resort
|
|
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
|
max_avail = MAX(max_avail, block->size);
|
|
if (block->size >= size) {
|
|
best_fit_block = alloc->n_free_blocks - 1;
|
|
} else {
|
|
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
|
__func__, size, max_avail);
|
|
GGML_ASSERT(!"not enough space in the buffer");
|
|
return;
|
|
}
|
|
}
|
|
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
|
void * addr = block->addr;
|
|
block->addr = (char*)block->addr + size;
|
|
block->size -= size;
|
|
if (block->size == 0) {
|
|
// remove block if empty
|
|
alloc->n_free_blocks--;
|
|
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
|
}
|
|
}
|
|
|
|
tensor->data = addr;
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
add_allocated_tensor(alloc, tensor);
|
|
size_t cur_max = (char*)addr - (char*)alloc->data + size;
|
|
if (cur_max > alloc->max_size) {
|
|
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
|
for (int i = 0; i < 1024; i++) {
|
|
if (alloc->allocated_tensors[i]) {
|
|
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
|
|
}
|
|
|
|
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
|
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
|
void * ptr = tensor->data;
|
|
|
|
if (ggml_allocr_is_own(alloc, tensor) == false) {
|
|
// the tensor was not allocated in this buffer
|
|
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
|
// the easiest way to deal with this is just to ignore it
|
|
return;
|
|
}
|
|
|
|
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
|
size = aligned_offset(NULL, size, alloc->alignment);
|
|
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
remove_allocated_tensor(alloc, tensor);
|
|
#endif
|
|
|
|
// see if we can merge with an existing block
|
|
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
|
struct free_block * block = &alloc->free_blocks[i];
|
|
// check if ptr is at the end of the block
|
|
if ((char*)block->addr + block->size == ptr) {
|
|
block->size += size;
|
|
// check if we can merge with the next block
|
|
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
|
|
block->size += alloc->free_blocks[i+1].size;
|
|
alloc->n_free_blocks--;
|
|
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// check if ptr is at the beginning of the block
|
|
if ((char*)ptr + size == block->addr) {
|
|
block->addr = ptr;
|
|
block->size += size;
|
|
// check if we can merge with the previous block
|
|
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
|
|
alloc->free_blocks[i-1].size += block->size;
|
|
alloc->n_free_blocks--;
|
|
for (int j = i; j < alloc->n_free_blocks; j++) {
|
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
// otherwise, add a new block
|
|
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
|
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
|
int insert_pos = 0;
|
|
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
|
|
insert_pos++;
|
|
}
|
|
// shift all blocks from insert_pos onward to make room for the new block
|
|
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
|
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
|
}
|
|
// insert the new block
|
|
alloc->free_blocks[insert_pos].addr = ptr;
|
|
alloc->free_blocks[insert_pos].size = size;
|
|
alloc->n_free_blocks++;
|
|
}
|
|
|
|
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
alloc->parse_seq[i] = list[i];
|
|
}
|
|
alloc->parse_seq_len = n;
|
|
}
|
|
|
|
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
|
alloc->n_free_blocks = 1;
|
|
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
|
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
|
alloc->free_blocks[0].size = alloc->size - align_offset;
|
|
}
|
|
|
|
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
|
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
|
|
|
*alloc = (struct ggml_allocr){
|
|
/*.data = */ data,
|
|
/*.size = */ size,
|
|
/*.alignment = */ alignment,
|
|
/*.n_free_blocks = */ 0,
|
|
/*.free_blocks = */ {{0}},
|
|
/*.hash_table = */ {{0}},
|
|
/*.max_size = */ 0,
|
|
/*.measure = */ false,
|
|
/*.parse_seq = */ {0},
|
|
/*.parse_seq_len = */ 0,
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
/*.allocated_tensors = */ {0},
|
|
#endif
|
|
};
|
|
|
|
ggml_allocr_reset(alloc);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
// OS specific functions to allocate and free uncommitted virtual memory
|
|
static void * alloc_vmem(size_t size) {
|
|
#if defined(_WIN32)
|
|
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
|
|
#elif defined(_POSIX_MAPPED_FILES)
|
|
void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
if (ptr == MAP_FAILED) {
|
|
return NULL;
|
|
}
|
|
return ptr;
|
|
#else
|
|
// use a fixed address for other platforms
|
|
uintptr_t base_addr = (uintptr_t)-size - 0x100;
|
|
return (void *)base_addr;
|
|
#endif
|
|
}
|
|
|
|
static void free_vmem(void * base_addr, size_t size) {
|
|
#if defined(_WIN32)
|
|
VirtualFree(base_addr, 0, MEM_RELEASE);
|
|
UNUSED(size);
|
|
#elif defined(_POSIX_MAPPED_FILES)
|
|
munmap(base_addr, size);
|
|
#else
|
|
// nothing to do
|
|
UNUSED(base_addr);
|
|
UNUSED(size);
|
|
#endif
|
|
}
|
|
|
|
// allocate uncommitted virtual memory to measure the size of the graph
|
|
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
|
|
// 128GB for 64-bit, 1GB for 32-bit
|
|
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37;
|
|
do {
|
|
*base_addr = alloc_vmem(*size);
|
|
if (*base_addr != NULL) {
|
|
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
|
|
return;
|
|
}
|
|
// try again with half the size
|
|
*size /= 2;
|
|
} while (*size > 0);
|
|
|
|
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
|
|
}
|
|
|
|
static void free_measure_vmem(void * base_addr, size_t size) {
|
|
free_vmem(base_addr, size);
|
|
}
|
|
|
|
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
|
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
|
|
|
void * base_addr;
|
|
size_t size;
|
|
|
|
alloc_measure_vmem(&base_addr, &size);
|
|
|
|
*alloc = (struct ggml_allocr){
|
|
/*.data = */ base_addr,
|
|
/*.size = */ size,
|
|
/*.alignment = */ alignment,
|
|
/*.n_free_blocks = */ 0,
|
|
/*.free_blocks = */ {{0}},
|
|
/*.hash_table = */ {{0}},
|
|
/*.max_size = */ 0,
|
|
/*.measure = */ true,
|
|
/*.parse_seq = */ {0},
|
|
/*.parse_seq_len = */ 0,
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
/*.allocated_tensors = */ {0},
|
|
#endif
|
|
};
|
|
|
|
ggml_allocr_reset(alloc);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
|
if (alloc->measure) {
|
|
free_measure_vmem(alloc->data, alloc->size);
|
|
}
|
|
free(alloc);
|
|
}
|
|
|
|
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
|
return alloc->measure;
|
|
}
|
|
|
|
//////////// compute graph allocator
|
|
|
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
|
if (a->type != b->type) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
|
if (a->ne[i] != b->ne[i]) {
|
|
return false;
|
|
}
|
|
if (a->nb[i] != b->nb[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_op_can_inplace(enum ggml_op op) {
|
|
switch (op) {
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_DIAG_MASK_ZERO:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_ADD1:
|
|
case GGML_OP_SUB:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SQRT:
|
|
case GGML_OP_LOG:
|
|
case GGML_OP_UNARY:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_CONT:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
|
struct hash_node * ht = alloc->hash_table;
|
|
if (node->data == NULL) {
|
|
if (ggml_is_view(node)) {
|
|
assert(node->view_src->data != NULL);
|
|
node->data = (char *)node->view_src->data + node->view_offs;
|
|
} else {
|
|
// see if we can reuse a parent's buffer (inplace)
|
|
if (ggml_op_can_inplace(node->op)) {
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
struct ggml_tensor * parent = node->src[i];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
|
|
// if the node's data is external, then we cannot re-use it
|
|
if (ggml_allocr_is_own(alloc, parent) == false) {
|
|
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
|
continue;
|
|
}
|
|
|
|
struct hash_node * p_hn = hash_get(ht, parent);
|
|
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
|
if (ggml_is_view(parent)) {
|
|
struct ggml_tensor * view_src = parent->view_src;
|
|
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
|
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
|
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
|
// the parent's data that it will need later (same layout requirement). the problem is that then
|
|
// we cannot free the tensor because the original address of the allocation is lost.
|
|
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
|
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
|
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
|
node->data = parent->data;
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
|
node->data = parent->data;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ggml_allocr_alloc(alloc, node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static size_t ggml_allocr_alloc_graph_tensors_n(
|
|
struct ggml_allocr * alloc,
|
|
struct ggml_cgraph ** graphs, int n_graphs,
|
|
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
|
|
|
// reset hash table
|
|
struct hash_node * ht = alloc->hash_table;
|
|
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
|
|
|
|
// count number of children and views
|
|
for (int g = 0; g < n_graphs; g++) {
|
|
struct ggml_cgraph * gf = graphs[g];
|
|
for (int i = 0; i < gf->n_nodes; i++) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
if (ggml_is_view(node)) {
|
|
struct ggml_tensor * view_src = node->view_src;
|
|
hash_get(ht, view_src)->n_views += 1;
|
|
}
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
hash_get(ht, parent)->n_children += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate tensors
|
|
for (int g = 0; g < n_graphs; g++) {
|
|
struct ggml_cgraph * gf = graphs[g];
|
|
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
|
// graph inputs are allocated first to ensure that they are not overwritten by each other
|
|
if (inputs != NULL && inputs[g] != NULL) {
|
|
for (int i = 0; inputs[g][i] != NULL; i++) {
|
|
struct ggml_tensor * input = inputs[g][i];
|
|
AT_PRINTF("input: %s\n", input->name);
|
|
allocate_node(alloc, input);
|
|
}
|
|
}
|
|
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
|
|
int last_barrier_pos = 0;
|
|
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
|
|
|
|
for (int ind = 0; ind < n_nodes; ind++) {
|
|
// allocate a node if there is no parse_seq or this is not a barrier
|
|
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
|
|
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
// allocate parents (leafs)
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
allocate_node(alloc, parent);
|
|
}
|
|
|
|
// allocate node
|
|
allocate_node(alloc, node);
|
|
|
|
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
AT_PRINTF("%s", parent->name);
|
|
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
|
AT_PRINTF(", ");
|
|
}
|
|
}
|
|
AT_PRINTF("\n");
|
|
}
|
|
|
|
// update parents
|
|
// update immediately if there is no parse_seq
|
|
// update only at barriers if there is parse_seq
|
|
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
|
|
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
|
|
int update_end = alloc->parse_seq_len ? ind : ind + 1;
|
|
for (int i = update_start; i < update_end; i++) {
|
|
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
|
|
struct ggml_tensor * node = gf->nodes[node_i];
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
struct hash_node * p_hn = hash_get(ht, parent);
|
|
p_hn->n_children -= 1;
|
|
|
|
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
|
|
|
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
|
if (ggml_is_view(parent)) {
|
|
struct ggml_tensor * view_src = parent->view_src;
|
|
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
|
view_src_hn->n_views -= 1;
|
|
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
|
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
|
ggml_allocr_free_tensor(alloc, view_src);
|
|
}
|
|
}
|
|
else {
|
|
if (parent->data != node->data) {
|
|
ggml_allocr_free_tensor(alloc, parent);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
AT_PRINTF("\n");
|
|
if (alloc->parse_seq_len) {
|
|
last_barrier_pos = ind + 1;
|
|
}
|
|
}
|
|
}
|
|
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
|
if (outputs != NULL && outputs[g] != NULL) {
|
|
for (int i = 0; outputs[g][i] != NULL; i++) {
|
|
struct ggml_tensor * output = outputs[g][i];
|
|
AT_PRINTF("output: %s\n", output->name);
|
|
ggml_allocr_free_tensor(alloc, output);
|
|
}
|
|
}
|
|
}
|
|
|
|
return alloc->max_size;
|
|
}
|
|
|
|
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
|
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
|
}
|