llama.cpp/kompute-shaders/op_rope_f32.comp
2023-12-13 17:49:45 -05:00

66 lines
2.4 KiB
Plaintext

#version 450
#include "rope_common.comp"
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
void main() {
const uint i3 = gl_WorkGroupID.z;
const uint i2 = gl_WorkGroupID.y;
const uint i1 = gl_WorkGroupID.x;
const bool is_neox = (pcs.mode & 2) != 0;
float corr_dims[2];
rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
const int p = inB[pcs.inBOff + i2];
float theta = float(p);
if (!is_neox) {
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
float cos_theta, sin_theta;
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
theta *= theta_scale;
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
const float x0 = inA[src];
const float x1 = inA[src+1];
out_[dst_data] = x0*cos_theta - x1*sin_theta;
out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
}
} else {
const float inv_ndims = -1.f/pcs.n_dims;
for (uint ib = 0; ib < pcs.ne0/pcs.n_dims; ++ib) {
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
const uint cur_rot = ib * pcs.n_dims + ic;
float cos_theta, sin_theta;
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
theta *= theta_scale;
const uint i0 = ib*pcs.n_dims + ic/2;
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
const float x0 = inA[src];
const float x1 = inA[src+pcs.n_dims/2];
out_[dst_data] = x0*cos_theta - x1*sin_theta;
out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
}
}
}
}