mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
edd4c14817
* tests : write a Python tokenizer test (wip) * llama : prefix input text for tokenization with whitespace * llama : distinguish pieces from decoded text + fix detokenization * common : add comments * examples : no longer manually add leading space when tokenizing * tests : use Python to generate tokenizer tests for C++ * tests : add option to tokenize text files ggml-ci * tests : add test-tokenizer-1.py * llama.cpp : fix LF token * hellaswag : move the concat space for clarity * tests : add falcon tests (py + cpp, currently do not pass Unicode) ggml-ci * common : temporary separate llama_detokenize calls for SPM and BPE --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
109 lines
3.2 KiB
C++
109 lines
3.2 KiB
C++
#include "llama.h"
|
|
#include "common.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <codecvt>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <locale>
|
|
|
|
static std::string escape_whitespace(const std::string& text) {
|
|
std::string result = "\xe2\x96\x81";
|
|
for (size_t offs = 0; offs < text.length(); ++offs) {
|
|
if (text[offs] == ' ') {
|
|
result += "\xe2\x96\x81";
|
|
} else {
|
|
result += text[offs];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
if (argc < 2) {
|
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
const std::string fname = argv[1];
|
|
|
|
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
llama_backend_init(false);
|
|
|
|
// load the vocab
|
|
{
|
|
auto lparams = llama_context_default_params();
|
|
|
|
lparams.vocab_only = true;
|
|
|
|
model = llama_load_model_from_file(fname.c_str(), lparams);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
return 1;
|
|
}
|
|
|
|
ctx = llama_new_context_with_model(model, lparams);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_BPE);
|
|
|
|
const int n_vocab = llama_n_vocab(ctx);
|
|
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
std::string forward = llama_token_to_piece(ctx, i);
|
|
std::vector<llama_token> tokens = llama_tokenize(ctx, forward, false);
|
|
if (tokens.size() == 1) {
|
|
if (i != tokens[0]) {
|
|
std::string backward = llama_token_to_piece(ctx, tokens[0]);
|
|
fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n",
|
|
__func__, i, llama_token_to_piece(ctx, i).c_str(), tokens[0], backward.c_str());
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
std::wstring_convert<typename std::codecvt_utf8<char16_t>, char16_t> u16converter;
|
|
for (char16_t ch = 0x0000; ch < 0xffff; ++ch) {
|
|
std::u16string u16str(1, ch);
|
|
std::string str = u16converter.to_bytes(u16str);
|
|
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
|
|
if (tokens.size() == 1) {
|
|
fprintf(stderr, "%s : info: %s tokenized to %d \n",
|
|
__func__, str.c_str(), tokens[0]);
|
|
}
|
|
}
|
|
|
|
std::wstring_convert<typename std::codecvt_utf8<char32_t>, char32_t> u32converter;
|
|
for (char32_t ch = 0x0000; ch < 0x0010ffff; ++ch) {
|
|
std::u32string u32str(1, ch);
|
|
std::string str = u32converter.to_bytes(u32str);
|
|
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
|
|
if (tokens.size() == 1) {
|
|
fprintf(stderr, "%s : info: %s tokenized to %d \n", __func__, str.c_str(), tokens[0]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
llama_free_model(model);
|
|
llama_free(ctx);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|