mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-08 17:51:45 +00:00
f3f65429c4
* scripts : update sync [no ci] * files : relocate [no ci] * ci : disable kompute build [no ci] * cmake : fixes [no ci] * server : fix mingw build ggml-ci * cmake : minor [no ci] * cmake : link math library [no ci] * cmake : build normal ggml library (not object library) [no ci] * cmake : fix kompute build ggml-ci * make,cmake : fix LLAMA_CUDA + replace GGML_CDEF_PRIVATE ggml-ci * move public backend headers to the public include directory (#8122) * move public backend headers to the public include directory * nix test * spm : fix metal header --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * scripts : fix sync paths [no ci] * scripts : sync ggml-blas.h [no ci] --------- Co-authored-by: slaren <slarengh@gmail.com>
45 lines
1.2 KiB
Plaintext
45 lines
1.2 KiB
Plaintext
#version 450
|
|
|
|
#include "generic_head.comp"
|
|
#include "types.comp"
|
|
|
|
#extension GL_EXT_control_flow_attributes : enable
|
|
#define BLOCK_SIZE 512
|
|
|
|
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
|
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
|
|
|
|
shared vec2 sum[BLOCK_SIZE];
|
|
|
|
void main() {
|
|
const uint row = gl_WorkGroupID.x;
|
|
const uint tid = gl_LocalInvocationID.x;
|
|
|
|
sum[tid] = vec2(0.0f, 0.0f);
|
|
|
|
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
|
const float xi = float(data_a[row*p.KX + col]);
|
|
sum[tid].x += xi;
|
|
sum[tid].y += xi * xi;
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier();
|
|
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
|
if (tid < s) {
|
|
sum[tid] += sum[tid + s];
|
|
}
|
|
barrier();
|
|
}
|
|
|
|
const float mean = sum[0].x / p.KX;
|
|
const float var = sum[0].y / p.KX - mean * mean;
|
|
const float inv_std = inversesqrt(var + p.param1);
|
|
|
|
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
|
data_d[row*p.KX + col] = D_TYPE((float(data_a[row*p.KX + col]) - mean) * inv_std);
|
|
}
|
|
}
|