mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
136 lines
4.2 KiB
Python
Executable File
136 lines
4.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import json
|
|
import os
|
|
import re
|
|
import struct
|
|
import sys
|
|
from typing import Any, Dict, Sequence, TextIO
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
NUMPY_TYPE_TO_FTYPE: Dict[str, int] = {"float32": 0, "float16": 1}
|
|
|
|
|
|
HF_SUBLAYER_TO_GGML = {
|
|
"self_attn.q_proj": "attn_q",
|
|
"self_attn.k_proj": "attn_k",
|
|
"self_attn.v_proj": "attn_v",
|
|
"self_attn.o_proj": "attn_output",
|
|
"mlp.gate_proj": "ffn_gate",
|
|
"mlp.down_proj": "ffn_down",
|
|
"mlp.up_proj": "ffn_up",
|
|
"input_layernorm": "attn_norm",
|
|
"post_attention_layernorm": "ffn_norm",
|
|
}
|
|
|
|
|
|
def translate_tensor_name(t: str) -> str:
|
|
match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
|
|
if match:
|
|
nn = match.group(1)
|
|
sub_layer = match.group(2)
|
|
lora_type = match.group(3)
|
|
|
|
sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
|
|
if sub_layer_renamed is None:
|
|
print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
|
|
sys.exit(1)
|
|
|
|
output_string = (
|
|
f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
|
|
)
|
|
return output_string
|
|
else:
|
|
print(f"Error: unrecognized tensor {t}")
|
|
sys.exit(1)
|
|
|
|
|
|
def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None:
|
|
fout.write(b"ggla"[::-1]) # magic (ggml lora)
|
|
fout.write(struct.pack("i", 1)) # file version
|
|
fout.write(struct.pack("i", params["r"]))
|
|
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
|
|
# but some models ship a float value instead
|
|
# let's convert to int, but fail if lossless conversion is not possible
|
|
assert (
|
|
int(params["lora_alpha"]) == params["lora_alpha"]
|
|
), "cannot convert float to int losslessly"
|
|
fout.write(struct.pack("i", int(params["lora_alpha"])))
|
|
|
|
|
|
def write_tensor_header(
|
|
self, name: str, shape: Sequence[int], data_type: np.dtype
|
|
) -> None:
|
|
sname = name.encode("utf-8")
|
|
fout.write(
|
|
struct.pack(
|
|
"iii",
|
|
len(shape),
|
|
len(sname),
|
|
NUMPY_TYPE_TO_FTYPE[data_type.name],
|
|
)
|
|
)
|
|
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
|
fout.write(sname)
|
|
fout.seek((fout.tell() + 31) & -32)
|
|
|
|
|
|
if len(sys.argv) != 2:
|
|
print(f"Usage: python {sys.argv[0]} <path>")
|
|
print(
|
|
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
|
)
|
|
sys.exit(1)
|
|
|
|
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
|
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
|
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
|
|
|
model = torch.load(input_model, map_location="cpu")
|
|
|
|
with open(input_json, "r") as f:
|
|
params = json.load(f)
|
|
|
|
if params["peft_type"] != "LORA":
|
|
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
|
sys.exit(1)
|
|
|
|
if params["fan_in_fan_out"] is True:
|
|
print("Error: param fan_in_fan_out is not supported")
|
|
sys.exit(1)
|
|
|
|
if params["bias"] is not None and params["bias"] != "none":
|
|
print("Error: param bias is not supported")
|
|
sys.exit(1)
|
|
|
|
# TODO: these seem to be layers that have been trained but without lora.
|
|
# doesn't seem widely used but eventually should be supported
|
|
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
|
print("Error: param modules_to_save is not supported")
|
|
sys.exit(1)
|
|
|
|
with open(output_path, "wb") as fout:
|
|
fout.truncate()
|
|
|
|
write_file_header(fout, params)
|
|
for k, v in model.items():
|
|
if k.endswith(".default.weight"):
|
|
k = k.replace(".default.weight", ".weight")
|
|
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
|
continue
|
|
if k.endswith("lora_A.weight"):
|
|
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
|
v = v.float()
|
|
v = v.T
|
|
else:
|
|
v = v.float()
|
|
|
|
t = v.detach().numpy()
|
|
tname = translate_tensor_name(k)
|
|
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
|
write_tensor_header(fout, tname, t.shape, t.dtype)
|
|
t.tofile(fout)
|
|
|
|
print(f"Converted {input_json} and {input_model} to {output_path}")
|