mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 04:24:30 +00:00
469 lines
16 KiB
C++
469 lines
16 KiB
C++
// kernels for ggml-cuda
|
|
#include <cuda.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
|
|
template<typename dst_t>
|
|
using to_t_cuda_t = void (*)(const void * x, dst_t * y, int k, cudaStream_t stream);
|
|
|
|
// support for vector types in generic code
|
|
template<typename T> struct vec2_t_impl;
|
|
template<> struct vec2_t_impl<half> { typedef half2 type; };
|
|
template<> struct vec2_t_impl<float> { typedef float2 type; };
|
|
|
|
template<typename T> using vec2_t = typename vec2_t_impl<T>::type;
|
|
|
|
template<typename T> inline __host__ __device__ vec2_t<T> make_vec2_t(const T & x, const T & y);
|
|
template<> inline __host__ __device__ vec2_t<half> make_vec2_t(const half & x, const half & y) { return make_half2 (x, y); }
|
|
template<> inline __host__ __device__ vec2_t<float> make_vec2_t(const float & x, const float & y) { return make_float2(x, y); }
|
|
|
|
// the cuda headers define operators for half2, but not for float2
|
|
// they are defined here to simplify generic code
|
|
inline __host__ __device__ float2 operator+(const float2 & a, const float2 & b) { return make_float2(a.x + b.x, a.y + b.y); }
|
|
inline __host__ __device__ float2 operator-(const float2 & a, const float2 & b) { return make_float2(a.x - b.x, a.y - b.y); }
|
|
inline __host__ __device__ float2 operator*(const float2 & a, const float2 & b) { return make_float2(a.x * b.x, a.y * b.y); }
|
|
inline __host__ __device__ float2 operator/(const float2 & a, const float2 & b) { return make_float2(a.x / b.x, a.y / b.y); }
|
|
inline __host__ __device__ float2 & operator+=( float2 & a, const float2 & b) { a.x += b.x; a.y += b.y; return a; }
|
|
inline __host__ __device__ float2 & operator-=( float2 & a, const float2 & b) { a.x -= b.x; a.y -= b.y; return a; }
|
|
inline __host__ __device__ float2 & operator*=( float2 & a, const float2 & b) { a.x *= b.x; a.y *= b.y; return a; }
|
|
inline __host__ __device__ float2 & operator/=( float2 & a, const float2 & b) { a.x /= b.x; a.y /= b.y; return a; }
|
|
|
|
template<typename dst_t>
|
|
using dequantize_kernel_t = void (*)(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v);
|
|
|
|
__device__ half sqrt(const half x) { return hsqrt(x); }
|
|
__device__ half exp(const half x) { return hexp(x); }
|
|
__device__ half2 exp(const half2 x) { return h2exp(x); }
|
|
__device__ half cos(const half x) { return hcos(x); }
|
|
__device__ half sin(const half x) { return hsin(x); }
|
|
__device__ half max(const half x, const half y) { return __hmax(x, y); }
|
|
__device__ half2 max(const half2 x, const half2 y) { return __hmax2(x, y); }
|
|
|
|
|
|
template<typename T> struct op_max { __device__ T operator()(T a, T b) const { return max(a, b); } };
|
|
template<typename T> struct op_sum { __device__ T operator()(T a, T b) const { return a + b; } };
|
|
|
|
template<template<typename> class op_t, typename T>
|
|
static inline __device__ T warp_reduce_all(T val) {
|
|
op_t<T> op;
|
|
#pragma unroll
|
|
for (int mask = warpSize/2; mask > 0; mask /= 2) {
|
|
val = op(val, __shfl_xor_sync(0xffffffff, val, mask, 32));
|
|
}
|
|
return val;
|
|
}
|
|
|
|
template<typename T>
|
|
static __device__ T zero_init() { return T(0); }
|
|
template<>
|
|
__device__ half2 zero_init() { return half2(0.0f, 0.0f); }
|
|
|
|
template<template<typename> class op_t, typename T>
|
|
static __device__ T block_reduce_all(const T val, const T init = zero_init<T>()) {
|
|
const int warp_id = threadIdx.x / warpSize; // warp id within the block
|
|
const int lane_id = threadIdx.x % warpSize; // lane id within the warp
|
|
const int num_warps = blockDim.x / warpSize; // number of warps in the block
|
|
|
|
__shared__ T lane_result[32]; // max 32 warps per block
|
|
|
|
// reduce warps
|
|
T warp_reduction = warp_reduce_all<op_t>(val);
|
|
|
|
__syncthreads();
|
|
|
|
// first thread within a warp writes reduction to shared memory
|
|
if (lane_id == 0) {
|
|
lane_result[warp_id] = warp_reduction;
|
|
}
|
|
|
|
// wait for all warps to finish writing their reductions
|
|
__syncthreads();
|
|
|
|
// reduce the results of all warps
|
|
T block_reduction = init;
|
|
if (lane_id < num_warps) {
|
|
block_reduction = lane_result[lane_id];
|
|
}
|
|
|
|
block_reduction = warp_reduce_all<op_t>(block_reduction);
|
|
|
|
return block_reduction;
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static __device__ void convert_fp16(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v) {
|
|
const half * x = (const half *) vx;
|
|
|
|
v.x = (dst_t)(x[ib + iqs + 0]);
|
|
v.y = (dst_t)(x[ib + iqs + 1]);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static __device__ void convert_fp32(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v) {
|
|
const float * x = (const float *) vx;
|
|
|
|
v.x = (dst_t)(x[ib + iqs + 0]);
|
|
v.y = (dst_t)(x[ib + iqs + 1]);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static __global__ void k_mul_mat_p021(const src0_t * vx, const src1_t * y, dst_t * dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
|
|
const src0_t * x = vx;
|
|
// const int col_x = blockDim.x*blockIdx.x + threadIdx.x;
|
|
// const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
dst_t tmp = 0;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
// x is transposed and permuted
|
|
const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
|
|
const dst_t xi = (dst_t)(x[ix]);
|
|
|
|
const int row_y = col_x;
|
|
|
|
// y is not transposed but permuted
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// dst is not transposed and not permuted
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static __global__ void k_mul_mat_vec_nc(
|
|
const src0_t * vx, const src1_t * y, dst_t * dst, const int ncols_x, const int nrows_x,
|
|
const int row_stride_x, const int nchannels_x, const int channel_stride_x) {
|
|
|
|
const src0_t * x = vx;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
dst_t tmp = 0;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
|
|
const dst_t xi = (dst_t)(x[ix]);
|
|
|
|
const int row_y = col_x;
|
|
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
template <typename src_t, typename dst_t>
|
|
static __global__ void k_cpy(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
const int i02 = i / (ne00*ne01);
|
|
const int i01 = (i - i02*ne01*ne00) / ne00;
|
|
const int i00 = i - i02*ne01*ne00 - i01*ne00;
|
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
|
|
|
const int i12 = i / (ne10*ne11);
|
|
const int i11 = (i - i12*ne10*ne11) / ne10;
|
|
const int i10 = i - i12*ne10*ne11 - i11*ne10;
|
|
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
|
|
|
*(dst_t *)(cdst + dst_offset) = *(const src_t *)(cx + x_offset);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static __global__ void k_add(const src0_t * x, const src1_t * y, dst_t * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = (dst_t)x[i] + (dst_t)y[i];
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static __global__ void k_mul(const src0_t * x, const src1_t * y, dst_t * dst, const int kx, const int ky) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= kx) {
|
|
return;
|
|
}
|
|
dst[i] = (dst_t)x[i] * (dst_t)y[i%ky];
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static __global__ void k_silu(const src0_t * x, dst_t * dst, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] / (src0_t(1) + exp(-x[i]));
|
|
}
|
|
|
|
// TODO: unstable with f16 compute, using f32 compute for now
|
|
template<typename src0_t, typename dst_t>
|
|
static __global__ void k_rms_norm(const src0_t * x, dst_t * dst, const int ncols) {
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
const int tid = threadIdx.x;
|
|
|
|
const float eps = 1e-6;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
const float xi = x[row*ncols + col];
|
|
tmp += xi * xi;
|
|
}
|
|
|
|
// sum up partial sums
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
const float mean = tmp / (float)ncols;
|
|
const float scale = 1.0f / sqrtf(mean + eps);
|
|
|
|
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
|
dst[row*ncols + col] = scale * (float)x[row*ncols + col];
|
|
}
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static __global__ void k_rope(const src0_t * x, dst_t * dst, const int ncols, const float p, const float theta_scale) {
|
|
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int i = row*ncols + col;
|
|
|
|
const dst_t theta = p * powf(theta_scale, col/2);
|
|
const dst_t sin_theta = sin(theta);
|
|
const dst_t cos_theta = cos(theta);
|
|
|
|
const dst_t x0 = x[i + 0];
|
|
const dst_t x1 = x[i + 1];
|
|
|
|
dst[i + 0] = (dst_t)x0*cos_theta - (dst_t)x1*sin_theta;
|
|
dst[i + 1] = (dst_t)x0*sin_theta + (dst_t)x1*cos_theta;
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static __global__ void k_diag_mask_inf(const src0_t * x, dst_t * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
|
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
//dst[i] = col > (n_past + row % rows_per_channel) ? (dst_t)-INFINITY : (dst_t)x[i];
|
|
dst[i] = (dst_t)x[i] - (dst_t)((col > n_past + row % rows_per_channel) * INT_MAX); // equivalent within rounding error but slightly faster on GPU
|
|
}
|
|
|
|
// TODO: numerically stable version - low prio since the softmax is computed in the fused attention kernel
|
|
// check: https://arxiv.org/pdf/2001.04438.pdf
|
|
template<typename src0_t, typename dst_t>
|
|
static __global__ void k_soft_max_orig(const src0_t * x, dst_t * dst, const int ncols) {
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int block_size = blockDim.x;
|
|
const int tid = threadIdx.x;
|
|
|
|
float tmp = 0;
|
|
|
|
for (int block_start = 0; block_start < ncols; block_start += block_size) {
|
|
const int col = block_start + tid;
|
|
|
|
if (col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
const float val = expf(x[i]);
|
|
tmp += val;
|
|
dst[i] = val;
|
|
}
|
|
|
|
// sum up partial sums
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
}
|
|
|
|
for (int block_start = 0; block_start < ncols; block_start += block_size) {
|
|
const int col = block_start + tid;
|
|
|
|
if (col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
dst[i] /= tmp;
|
|
}
|
|
}
|
|
|
|
template<typename src_t, typename dst_t, int pack_size, int block_size>
|
|
static __global__ void k_soft_max(const src_t * x, dst_t * dst, const int64_t nrows, const int64_t ncols) {
|
|
//assert(ncols % pack_size == 0);
|
|
const int tid = threadIdx.x;
|
|
const int num_packs = ncols / pack_size;
|
|
|
|
for (int row = blockIdx.x; row < nrows; row += gridDim.x) {
|
|
src_t th_max = -INFINITY;
|
|
// row max thread
|
|
#pragma unroll
|
|
for (int pack_id = tid; pack_id < num_packs; pack_id += block_size) {
|
|
// load pack
|
|
src_t pack[pack_size];
|
|
#pragma unroll
|
|
for (int i = 0; i < pack_size; i++) {
|
|
pack[i] = x[row * ncols + pack_id * pack_size + i];
|
|
}
|
|
// reduce max pack
|
|
#pragma unroll
|
|
for (int i = 0; i < pack_size; ++i) {
|
|
th_max = max(th_max, pack[i]);
|
|
}
|
|
}
|
|
// reduce max row warp threads
|
|
src_t row_max = block_reduce_all<op_max>(th_max, (src_t)-INFINITY);
|
|
|
|
// row exp sum thread
|
|
src_t th_sum = 0;
|
|
#pragma unroll
|
|
for (int pack_id = tid; pack_id < num_packs; pack_id += block_size) {
|
|
// load pack
|
|
src_t pack[pack_size];
|
|
#pragma unroll
|
|
for (int i = 0; i < pack_size; i++) {
|
|
pack[i] = x[row * ncols + pack_id * pack_size + i];
|
|
}
|
|
// reduce pack
|
|
#pragma unroll
|
|
for (int i = 0; i < pack_size; ++i) {
|
|
th_sum += exp(pack[i] - row_max);
|
|
}
|
|
}
|
|
|
|
// reduce row exp sum all threads
|
|
src_t row_sum = block_reduce_all<op_sum>(th_sum);
|
|
|
|
// store (row - row_max) / row exp sum
|
|
#pragma unroll
|
|
for (int pack_id = tid; pack_id < num_packs; pack_id += block_size) {
|
|
// load pack
|
|
src_t pack[pack_size];
|
|
#pragma unroll
|
|
for (int i = 0; i < pack_size; i++) {
|
|
pack[i] = x[row * ncols + pack_id * pack_size + i];
|
|
}
|
|
// reduce pack
|
|
#pragma unroll
|
|
for (int i = 0; i < pack_size; ++i) {
|
|
pack[i] = exp(pack[i] - row_max) / row_sum;
|
|
}
|
|
|
|
// store pack
|
|
#pragma unroll
|
|
for (int i = 0; i < pack_size; i++) {
|
|
dst[row * ncols + pack_id * pack_size + i] = pack[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static __global__ void k_scale(const src0_t * x, dst_t * dst, const src1_t * scale, const int k) {
|
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
dst[i] = (dst_t)(*scale) * (dst_t)x[i];
|
|
}
|
|
|
|
template<typename dst_t, int qk, int qr, dequantize_kernel_t<dst_t> dequantize_kernel>
|
|
static __global__ void k_get_rows(const void * x, const int * y, dst_t * dst, const int ncols) {
|
|
const int col = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int r = y[row];
|
|
|
|
// copy x[r*ncols + col] to dst[row*ncols + col]
|
|
const int xi = r*ncols + col;
|
|
const int di = row*ncols + col;
|
|
|
|
const int ib = xi/qk; // block index
|
|
const int iqs = (xi%qk)/qr; // quant index
|
|
const int iybs = di - di%qk; // y block start index
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// dequantize
|
|
vec2_t<dst_t> v;
|
|
dequantize_kernel(x, ib, iqs, v);
|
|
dst[iybs + iqs + 0] = v.x;
|
|
dst[iybs + iqs + y_offset] = v.y;
|
|
}
|