mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 09:11:46 +00:00
2b3389677a
* ggml : unify rope norm/neox (CPU) * ggml : fix compile warning * ggml : remove GLM rope mode ggml-ci * metal : better rope implementation ggml-ci * cuda : better rope implementation ggml-ci * naming : n_orig_ctx -> n_ctx_orig ggml-ci * dev : add reminders to update backends ggml-ci * vulkan : fix ggml_rope_ext() usage * cuda : fix array size + indents ggml-ci
74 lines
2.8 KiB
Plaintext
74 lines
2.8 KiB
Plaintext
#version 450
|
|
|
|
#include "rope_common.comp"
|
|
|
|
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
|
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
|
layout(binding = 2) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
|
|
|
void main() {
|
|
const uint i3 = gl_WorkGroupID.z;
|
|
const uint i2 = gl_WorkGroupID.y;
|
|
const uint i1 = gl_WorkGroupID.x;
|
|
|
|
const bool is_neox = (pcs.mode & 2) != 0;
|
|
|
|
float corr_dims[2];
|
|
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
|
|
|
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
|
|
|
const int p = inB[pcs.inBOff + i2];
|
|
|
|
float theta = float(p);
|
|
|
|
if (!is_neox) {
|
|
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
|
float cos_theta, sin_theta;
|
|
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
|
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
|
|
|
const float x0 = float(inA[src]);
|
|
const float x1 = float(inA[src+1]);
|
|
|
|
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
|
out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta);
|
|
}
|
|
} else {
|
|
const float inv_ndims = -1.f/pcs.n_dims;
|
|
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
|
const uint cur_rot = ic;
|
|
|
|
float cos_theta, sin_theta;
|
|
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const uint i0 = ic/2;
|
|
|
|
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
|
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
|
|
|
const float x0 = float(inA[src]);
|
|
const float x1 = float(inA[src+pcs.n_dims/2]);
|
|
|
|
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
|
out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
|
|
}
|
|
|
|
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
|
const uint i0 = ic;
|
|
|
|
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
|
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
|
|
|
out_[dst_data + 0] = inA[src + 0];
|
|
out_[dst_data + 1] = inA[src + 1];
|
|
}
|
|
}
|
|
}
|