mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 10:41:47 +00:00
f4d2b8846a
* py : add XLMRobertaForSequenceClassification [no ci] * py : fix scalar-tensor conversion [no ci] * py : fix position embeddings chop [no ci] * llama : read new cls tensors [no ci] * llama : add classigication head (wip) [no ci] * llama : add "rank" pooling type ggml-ci * server : add rerank endpoint ggml-ci * llama : aboud ggml_repeat during classification * rerank : cleanup + comments * server : accept /rerank endpoint in addition to /v1/rerank [no ci] * embedding : parse special tokens * jina : support v1 reranker * vocab : minor style ggml-ci * server : initiate tests for later ggml-ci * server : add docs * llama : add comment [no ci] * llama : fix uninitialized tensors * ci : add rerank tests ggml-ci * add reranking test * change test data * Update examples/server/server.cpp Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * add `--reranking` argument * update server docs * llama : fix comment [no ci] ggml-ci --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co> Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
114 lines
3.7 KiB
Gherkin
114 lines
3.7 KiB
Gherkin
@llama.cpp
|
|
@embeddings
|
|
Feature: llama.cpp server
|
|
|
|
Background: Server startup
|
|
Given a server listening on localhost:8080
|
|
And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
|
|
And a model file bert-bge-small.gguf
|
|
And a model alias bert-bge-small
|
|
And 42 as server seed
|
|
And 2 slots
|
|
# the bert-bge-small model has context size of 512
|
|
# since the generated prompts are as big as the batch size, we need to set the batch size to <= 512
|
|
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
|
|
And 128 as batch size
|
|
And 128 as ubatch size
|
|
And 512 KV cache size
|
|
And enable embeddings endpoint
|
|
Then the server is starting
|
|
Then the server is healthy
|
|
|
|
Scenario: Embedding
|
|
When embeddings are computed for:
|
|
"""
|
|
What is the capital of Bulgaria ?
|
|
"""
|
|
Then embeddings are generated
|
|
|
|
Scenario: Embedding (error: prompt too long)
|
|
When embeddings are computed for:
|
|
"""
|
|
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
|
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
|
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
|
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
|
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
|
|
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
|
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
|
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
|
"""
|
|
And embeddings request with 500 api error
|
|
|
|
Scenario: OAI Embeddings compatibility
|
|
Given a model bert-bge-small
|
|
When an OAI compatible embeddings computation request for:
|
|
"""
|
|
What is the capital of Spain ?
|
|
"""
|
|
Then embeddings are generated
|
|
|
|
Scenario: OAI Embeddings compatibility with multiple inputs
|
|
Given a model bert-bge-small
|
|
Given a prompt:
|
|
"""
|
|
In which country Paris is located ?
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Is Madrid the capital of Spain ?
|
|
"""
|
|
When an OAI compatible embeddings computation request for multiple inputs
|
|
Then embeddings are generated
|
|
|
|
Scenario: Multi users embeddings
|
|
Given a prompt:
|
|
"""
|
|
Write a very long story about AI.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write another very long music lyrics.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write a very long poem.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write a very long joke.
|
|
"""
|
|
Given concurrent embedding requests
|
|
Then the server is busy
|
|
Then the server is idle
|
|
Then all embeddings are generated
|
|
|
|
Scenario: Multi users OAI compatibility embeddings
|
|
Given a prompt:
|
|
"""
|
|
In which country Paris is located ?
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Is Madrid the capital of Spain ?
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
What is the biggest US city ?
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
What is the capital of Bulgaria ?
|
|
"""
|
|
And a model bert-bge-small
|
|
Given concurrent OAI embedding requests
|
|
Then the server is busy
|
|
Then the server is idle
|
|
Then all embeddings are generated
|
|
|
|
Scenario: All embeddings should be the same
|
|
Given 10 fixed prompts
|
|
And a model bert-bge-small
|
|
Given concurrent OAI embedding requests
|
|
Then all embeddings are the same
|