llama.cpp/kompute/op_mul_mat_q8_0.comp
2023-12-13 17:49:19 -05:00

57 lines
1.6 KiB
Plaintext

#version 450
#include "common.comp"
#define BLOCKS_IN_QUANT QK8_0
#define SIZE_OF_BLOCK sizeof_block_q8_0
#define N_ROWS 4
layout(local_size_x_id = 0) in;
layout(local_size_y = 1) in;
layout(local_size_z = 1) in;
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int ne10;
int ne0;
int ne1;
int ne01;
int gqa;
} pcs;
#define ELS_PER_BLOCK 32
#define SIZE_OF_D 2
#define BLOCK_SIZE (ELS_PER_BLOCK + SIZE_OF_D)
void main() {
const uint r0 = gl_WorkGroupID.x;
const uint r1 = gl_WorkGroupID.y;
const uint im = gl_WorkGroupID.z;
const uint x = r0 * (pcs.ne00/ELS_PER_BLOCK) * BLOCK_SIZE + pcs.inAOff; // Based from inA
const uint y = r1 * pcs.ne10 + pcs.inBOff; // based from inB
float sumf = 0.0f;
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
const uint block_number = i / ELS_PER_BLOCK;
const uint block_offset = block_number * BLOCK_SIZE;
const float d = u8BufToFloat16(inA, x + block_offset);
const uint position_in_block = i % ELS_PER_BLOCK;
const int q = int8_t(inA[x+block_offset+SIZE_OF_D+position_in_block]);
const float dq = d * q;
sumf += dq * float(inB[y+i]);
}
const float all_sum = subgroupAdd(sumf);
if (subgroupElect()) {
out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum;
}
}