mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 21:34:36 +00:00
41 lines
1.2 KiB
Plaintext
41 lines
1.2 KiB
Plaintext
#include "sumrows.cuh"
|
|
|
|
static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
|
|
const int row = blockIdx.x;
|
|
const int col = threadIdx.x;
|
|
|
|
float sum = 0.0f;
|
|
for (int i = col; i < ncols; i += blockDim.x) {
|
|
sum += x[row * ncols + i];
|
|
}
|
|
|
|
sum = warp_reduce_sum(sum);
|
|
|
|
if (col == 0) {
|
|
dst[row] = sum;
|
|
}
|
|
}
|
|
|
|
static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
const dim3 block_nums(nrows, 1, 1);
|
|
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
}
|
|
|
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
|
|
const int64_t ncols = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
|
|
}
|