mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
2e17dfd80a
* Improve interactive mode's coherence after EOS Aims to improve coherence and ability to resume the interactive session when the user is given input back after an end of text token is reached. Not sure what token 13 is or why it seems to help. See conversation for examples. * Make newline token a constant * dynamically determine newline token * relocate previous newline token const * cleanup whitespace * print a new line on end of text in interactive this may need to be looked into further when not using a reverse prompt * only print manual newline with reverse prompt fix formatting of reverse prompts so they don't end up at the end of the current line while not introducing unnecessary new lines otherwise * alternate approach to replace end of text tokens * Inject the reverse prompt again after eos in interactive mode * tokenize reverse prompt when needed makes this PR compatible with https://github.com/ggerganov/llama.cpp/pull/330 * tokenize and inject only first reverse prompt thanks to tjohnman * tokenize first reverse prompt once * add newline token * add newline token * tokenize/inject reverse prompt for refactor this doesn't seem right though * tokenize nothing for antiprompt if no reverse * Update main.cpp * Update main.cpp * tokenize and inject reverse prompt as needed this doesn't seem to work if the reverse prompt is tokenized outside earlier on * not needed * remove newline token * remove newline token * tokenize newline token * add space to comment * Update main.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Slaren <2141330+slaren@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
490 lines
17 KiB
C++
490 lines
17 KiB
C++
#include "utils.h"
|
|
#include "ggml.h"
|
|
#include "llama.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined (_WIN32)
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
#if defined (_WIN32)
|
|
#pragma comment(lib,"kernel32.lib")
|
|
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
|
|
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
|
|
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
|
|
#endif
|
|
|
|
#define ANSI_COLOR_RED "\x1b[31m"
|
|
#define ANSI_COLOR_GREEN "\x1b[32m"
|
|
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
|
#define ANSI_COLOR_BLUE "\x1b[34m"
|
|
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
|
#define ANSI_COLOR_CYAN "\x1b[36m"
|
|
#define ANSI_COLOR_RESET "\x1b[0m"
|
|
#define ANSI_BOLD "\x1b[1m"
|
|
|
|
/* Keep track of current color of output, and emit ANSI code if it changes. */
|
|
enum console_state {
|
|
CONSOLE_STATE_DEFAULT=0,
|
|
CONSOLE_STATE_PROMPT,
|
|
CONSOLE_STATE_USER_INPUT
|
|
};
|
|
|
|
static console_state con_st = CONSOLE_STATE_DEFAULT;
|
|
static bool con_use_color = false;
|
|
|
|
void set_console_state(console_state new_st)
|
|
{
|
|
if (!con_use_color) return;
|
|
// only emit color code if state changed
|
|
if (new_st != con_st) {
|
|
con_st = new_st;
|
|
switch(con_st) {
|
|
case CONSOLE_STATE_DEFAULT:
|
|
printf(ANSI_COLOR_RESET);
|
|
return;
|
|
case CONSOLE_STATE_PROMPT:
|
|
printf(ANSI_COLOR_YELLOW);
|
|
return;
|
|
case CONSOLE_STATE_USER_INPUT:
|
|
printf(ANSI_BOLD ANSI_COLOR_GREEN);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<double> softmax(const std::vector<float>& logits) {
|
|
std::vector<double> probs(logits.size());
|
|
float max_logit = logits[0];
|
|
for (float v : logits) max_logit = std::max(max_logit, v);
|
|
double sum_exp = 0.0;
|
|
for (size_t i = 0; i < logits.size(); i++) {
|
|
// Subtract the maximum logit value from the current logit value for numerical stability
|
|
float logit = logits[i] - max_logit;
|
|
double exp_logit = std::exp(logit);
|
|
sum_exp += exp_logit;
|
|
probs[i] = exp_logit;
|
|
}
|
|
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
|
|
return probs;
|
|
}
|
|
|
|
void perplexity(llama_context * ctx, const gpt_params & params) {
|
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
int seq_count = tokens.size() / params.n_ctx;
|
|
|
|
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
|
|
|
|
for (int i = 0; i < seq_count; ++i) {
|
|
int start = i * params.n_ctx;
|
|
int end = start + params.n_ctx - 1;
|
|
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
|
|
auto start_t = std::chrono::high_resolution_clock::now();
|
|
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return;
|
|
}
|
|
auto end_t = std::chrono::high_resolution_clock::now();
|
|
if (i == 0) {
|
|
double seconds = std::chrono::duration<double>(end_t - start_t).count();
|
|
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
|
|
}
|
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
|
// calculate the perplexity over the last half the window (so the model always has
|
|
// some context to predict the token).
|
|
//
|
|
// We rely on the fact that attention in the forward pass only looks at previous
|
|
// tokens here, so the logits returned for each token are an accurate representation
|
|
// of what the model would have predicted at that point.
|
|
//
|
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
|
// process the entire prompt.
|
|
|
|
auto logits = llama_get_logits(ctx);
|
|
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
|
|
// Calculate probability of next token, given the previous ones.
|
|
int n_vocab = llama_n_vocab(ctx);
|
|
std::vector<float> tok_logits(
|
|
logits + j * n_vocab,
|
|
logits + (j + 1) * n_vocab);
|
|
double prob = softmax(tok_logits)[tokens[start + j + 1]];
|
|
nll += -std::log(prob);
|
|
++count;
|
|
}
|
|
// perplexity is e^(average negative log-likelihood)
|
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
fflush(stdout);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static bool is_interacting = false;
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
void sigint_handler(int signo) {
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
printf("\n"); // this also force flush stdout.
|
|
if (signo == SIGINT) {
|
|
if (!is_interacting) {
|
|
is_interacting=true;
|
|
} else {
|
|
_exit(130);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int main(int argc, char ** argv) {
|
|
// has to be called once at the start of the program to init ggml stuff
|
|
ggml_time_init();
|
|
|
|
gpt_params params;
|
|
params.model = "models/llama-7B/ggml-model.bin";
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (params.n_ctx > 2048) {
|
|
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
|
"expect poor results\n", __func__, params.n_ctx);
|
|
}
|
|
|
|
if (params.seed <= 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
// save choice to use color for later
|
|
// (note for later: this is a slightly awkward choice)
|
|
con_use_color = params.use_color;
|
|
|
|
// params.prompt = R"(// this function checks if the number n is prime
|
|
//bool is_prime(int n) {)";
|
|
|
|
llama_context * ctx;
|
|
|
|
// load the model
|
|
{
|
|
auto lparams = llama_context_default_params();
|
|
|
|
lparams.n_ctx = params.n_ctx;
|
|
lparams.n_parts = params.n_parts;
|
|
lparams.seed = params.seed;
|
|
lparams.f16_kv = params.memory_f16;
|
|
lparams.logits_all = params.perplexity;
|
|
|
|
ctx = llama_init_from_file(params.model.c_str(), lparams);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
}
|
|
|
|
// determine the required inference memory per token:
|
|
// TODO: better way to do that
|
|
{
|
|
const std::vector<llama_token> tmp = { 0, 1, 2, 3 };
|
|
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
|
}
|
|
|
|
if (params.perplexity) {
|
|
perplexity(ctx, params);
|
|
exit(0);
|
|
}
|
|
|
|
int n_past = 0;
|
|
|
|
// Add a space in front of the first character to match OG llama tokenizer behavior
|
|
params.prompt.insert(0, 1, ' ');
|
|
|
|
// tokenize the prompt
|
|
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
params.n_predict = std::min(params.n_predict, n_ctx - (int) embd_inp.size());
|
|
|
|
// prefix & suffix for instruct mode
|
|
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
|
|
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
|
|
|
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
|
if (params.instruct) {
|
|
params.interactive = true;
|
|
params.antiprompt.push_back("### Instruction:\n\n");
|
|
}
|
|
|
|
// enable interactive mode if reverse prompt is specified
|
|
if (params.antiprompt.size() != 0) {
|
|
params.interactive = true;
|
|
}
|
|
|
|
if (params.interactive_start) {
|
|
params.interactive = true;
|
|
}
|
|
|
|
// determine newline token
|
|
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
|
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
|
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
|
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
|
}
|
|
fprintf(stderr, "\n");
|
|
if (params.interactive) {
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = sigint_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
signal(SIGINT, sigint_handler);
|
|
#endif
|
|
|
|
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
|
|
|
if(params.antiprompt.size()) {
|
|
for (auto antiprompt : params.antiprompt) {
|
|
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
|
|
}
|
|
}
|
|
}
|
|
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
|
fprintf(stderr, "\n\n");
|
|
|
|
std::vector<llama_token> embd;
|
|
|
|
int last_n_size = params.repeat_last_n;
|
|
std::vector<llama_token> last_n_tokens(last_n_size);
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
|
|
if (params.interactive) {
|
|
fprintf(stderr, "== Running in interactive mode. ==\n"
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
" - Press Ctrl+C to interject at any time.\n"
|
|
#endif
|
|
" - Press Return to return control to LLaMa.\n"
|
|
" - If you want to submit another line, end your input in '\\'.\n\n");
|
|
is_interacting = params.interactive_start || params.instruct;
|
|
}
|
|
|
|
int input_consumed = 0;
|
|
bool input_noecho = false;
|
|
|
|
int remaining_tokens = params.n_predict;
|
|
|
|
#if defined (_WIN32)
|
|
if (params.use_color) {
|
|
// Enable ANSI colors on Windows 10+
|
|
unsigned long dwMode = 0;
|
|
void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
|
|
if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
|
|
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
|
|
}
|
|
}
|
|
#endif
|
|
// the first thing we will do is to output the prompt, so set color accordingly
|
|
set_console_state(CONSOLE_STATE_PROMPT);
|
|
|
|
while (remaining_tokens > 0 || params.interactive) {
|
|
// predict
|
|
if (embd.size() > 0) {
|
|
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
n_past += embd.size();
|
|
embd.clear();
|
|
|
|
if ((int) embd_inp.size() <= input_consumed) {
|
|
// out of user input, sample next token
|
|
const float top_k = params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float temp = params.temp;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
|
|
llama_token id = 0;
|
|
|
|
{
|
|
auto logits = llama_get_logits(ctx);
|
|
|
|
if (params.ignore_eos) {
|
|
// set the logit of the eos token to zero to avoid sampling it
|
|
//logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
|
|
// TODO: this does not work of params.logits_all == true
|
|
assert(params.perplexity == false);
|
|
logits[llama_token_eos()] = 0;
|
|
}
|
|
|
|
id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty);
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
}
|
|
|
|
// replace end of text token with newline token when in interactive mode
|
|
if (id == llama_token_eos() && params.interactive) {
|
|
id = llama_token_newline.front();
|
|
if (params.antiprompt.size() != 0) {
|
|
// tokenize and inject first reverse prompt
|
|
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
|
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
|
}
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// echo this to console
|
|
input_noecho = false;
|
|
|
|
// decrement remaining sampling budget
|
|
--remaining_tokens;
|
|
} else {
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while ((int) embd_inp.size() > input_consumed) {
|
|
embd.push_back(embd_inp[input_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[input_consumed]);
|
|
++input_consumed;
|
|
if ((int) embd.size() >= params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// display text
|
|
if (!input_noecho) {
|
|
for (auto id : embd) {
|
|
printf("%s", llama_token_to_str(ctx, id));
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
// reset color to default if we there is no pending user input
|
|
if (!input_noecho && (int)embd_inp.size() == input_consumed) {
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
}
|
|
|
|
// in interactive mode, and not currently processing queued inputs;
|
|
// check if we should prompt the user for more
|
|
if (params.interactive && (int) embd_inp.size() <= input_consumed) {
|
|
// check for reverse prompt
|
|
std::string last_output;
|
|
for (auto id : last_n_tokens) {
|
|
last_output += llama_token_to_str(ctx, id);
|
|
}
|
|
|
|
// Check if each of the reverse prompts appears at the end of the output.
|
|
for (std::string antiprompt : params.antiprompt) {
|
|
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
|
is_interacting = true;
|
|
break;
|
|
}
|
|
}
|
|
if (is_interacting) {
|
|
// potentially set color to indicate we are taking user input
|
|
set_console_state(CONSOLE_STATE_USER_INPUT);
|
|
|
|
if (params.instruct) {
|
|
input_consumed = embd_inp.size();
|
|
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
|
|
|
printf("\n> ");
|
|
}
|
|
|
|
std::string buffer;
|
|
std::string line;
|
|
bool another_line = true;
|
|
do {
|
|
std::getline(std::cin, line);
|
|
if (line.empty() || line.back() != '\\') {
|
|
another_line = false;
|
|
} else {
|
|
line.pop_back(); // Remove the continue character
|
|
}
|
|
buffer += line + '\n'; // Append the line to the result
|
|
} while (another_line);
|
|
|
|
// done taking input, reset color
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
|
|
auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
|
|
|
if (params.instruct) {
|
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
|
}
|
|
|
|
remaining_tokens -= line_inp.size();
|
|
|
|
input_noecho = true; // do not echo this again
|
|
}
|
|
is_interacting = false;
|
|
}
|
|
|
|
// end of text token
|
|
if (embd.back() == llama_token_eos()) {
|
|
fprintf(stderr, " [end of text]\n");
|
|
break;
|
|
}
|
|
|
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
|
if (params.interactive && remaining_tokens <= 0) {
|
|
remaining_tokens = params.n_predict;
|
|
is_interacting = true;
|
|
}
|
|
}
|
|
|
|
#if defined (_WIN32)
|
|
signal(SIGINT, SIG_DFL);
|
|
#endif
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
llama_free(ctx);
|
|
|
|
set_console_state(CONSOLE_STATE_DEFAULT);
|
|
|
|
return 0;
|
|
}
|