44c117f41e
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train * remove unnecessary Adam(W) optimizer tensors. reduces optimizer memory overhead from 7*modelsize to 2*modelsize. additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t. bumps training checkpoint file version, but old checkpoints can still be read. new version with less tensors is saved. * add gradient clipping to AdamW * Fix reset of unused g->nodes and g->grads to NULL * implement gradient checkpointing for training reduces memory overhead from O(n_layer) to O(sqrt(n_layer)) as explained in readme of https://github.com/cybertronai/gradient-checkpointing * remove unused compute buffer 3 * add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); * change AdamW decay parameter to work like the torch AdamW decay parameter It is now relative to Adam learning rate `alpha*sched`. Before that it was relative to `sched` only. `alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1] * change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT * change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW btw: the default weight decay parameter for torch.optim.AdamW is 0.01 * bug fixes for cross entropy loss ggml_cross_entropy_loss: sums where not correctly added in workload of each thread ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16 cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup. so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance. * fix test-grad0 for cross_entropy_loss the second argument to cross_entropy_loss must sum up to 1 for each row * fix test-grad0 for soft_max dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) * improve finite differences of test-grad0 by using double instead of float * change cross_entropy_loss to output average over all rows this helps keeping the loss and gradients in a sane range * improve gradient checkpointing sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal. since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different: ``` given: n, u, v objective: minimize(a*u+b*v) where a*b=n, a>0, b>0 b=n/a minimize(a*u+v*n/a) diff(a*u+v*n/a, a) = u - (v*n/a)/a diff(a*u+v*n/a, a) == 0 u - (v*n/a)/a == 0 u == v*n/(a*a) u*a*a = v*n a*a = v*n/u a = sqrt(n*v/u) ``` this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage. * disable gradient checkpointing debug output * llama : fix rope usage in train-text-from-scratch after ChatGLM change * add more training parameters: --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. --adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha * replace memcpy with reshape operation so that the graph is not cut at the input this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it * remove unused function argument from get_example_targets_batch * measure and print total training time * add optimization callback to ggml_opt_resume_g this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)). can be used for dynamic learning schedule and setting input data for batches before each iteration * use optimization callback in training allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration * add minimum number of tensor dimensions to apply weight decay (default 2) this allows to not apply weight decay to bias parameters * rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup * fix increase of model.train_samples and model.train_tokens now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations * change sampling parameters for prediction after training to defaults of common.h and clarify what is context for prediction and what are generated tokens * tighten abs error bounds for cross_entropy_loss in test-grad0 * add conditional compilation of using F16 exp in flash attention uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention * tighten abs error bounds for flash_attn in test-grad0 * tighten abs error bounds for sqrt in test-grad0 * remove out-commented vectorized code of opt_adam the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead * ggml : update ggml_rms_norm_back with configurable eps * llama training : fix ggml_rms_norm_back calls to pass configurable eps * remove trailing whitespace * add train function using automatic gradient checkpointing backward pass and allocator * in train function replace add_inplace by regular add because using add_inplace seems to result in different gradients * don't use allocate hash_map on context because the context has no_alloc=True when using memory allocator resulting in NULL data pointers * correctly clone reshape and permute operations by also cloning tensor->nb values * fix variable name and add missing type cast * terminate recursive tensor cloning when reaching tensor without src tensors * correctly clone view tensors by setting data pointers without this the checkpointing would only work when being used together with memory allocator * fix variable names * swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn` * add input tensors as checkpoints so that recursive tensor cloning of gradient checkpointing terminates on input tensors * fix variable name and add missing boolean negation * make sure some tensors are not reallocated by inserting new temporary nodes depending on them: output and parameter gradient tensors need to be available at the end of the graph execution parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration checkpoint tensors are allocated all together to reduce memory allocator fragmentation afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs * fix ASSERT to work with zero layers * add training options whether to use allocator and/or unified training function * integrate unified training function which may use memory allocator the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing * format name of cloned tensors with " (clone)" suffix * set names for tensors in unified train function for easier debugging * allocate graph on context using ggml_new_graph * remove handwritten training functions * remove unused training parameters "use_scratch" and "use_unified" * remove trailing whitespace * remove unused train params: mem_compute1_gb & mem_compute2_gb mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented) * remove unused forward_batch function * add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly * only use ggml_allocr_alloc when tensor has NULL data and is no view * fix test when to create temporary backward graph temporary backward graph is only necessary when using checkpointing * fix memory "leak" in optimizers each iteration a new cplan with new memory for work data was allocated. now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data. * reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory. the computation results are the same * add missing lctx argument to get_example_targets_batch * implement llama model file saving using gguf checkpoint loading and saving disabled, to be replaced by loading and saving via gguf * implement loading/saving of checkpointing files using GGUF * bug fixes * add checkpoint file version for future compatibility * update readme with gguf filenames * save & load opt->just_initialized value * add first draft for checkpoint conversion script * add gguf arch and ftype * save opt parameter counter as uint64 * add gguf key and tensor names for optimizer and training * add layer_norm_rms_eps to checkpoint convert script * use same GGUF_GET_KEY macro as in llama.cpp * use norm_rms_eps, and rope parameters and command line options to set them * fix memory corruption bug in gguf ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free. to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function. so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying and freeing the old data. * add gguf example cmake file * bug fixes in tokenize_file * bug fixes in load_llama_model_gguf * bug fix: init model when no checkpoint was loaded * bug fix in read_tensor_by_name * bug fix in load_opt_context_gguf * avoid printing lots of spaced on the unusual case that loss gets nan * set name of tensors with empty name from what was read from gguf * remove trailing whitespace * print data checksums before saving and after loading to verify correctness * bug fixes for convert-train-checkpoint-to-gguf * temporarily add code to write old checkpoint files used to verify that old checkpoint files are correctly converted to gguf * bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0 * remove code used to verify correctness of checkpoint file conversion * remove trailing whitespace * remove prediction related code use main for prediction, it is better optimized * update train-text-from-scratch README.md * fix non-windows GGML_ALIGNED_REALLOC * add missing blank line at end of file * remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos * train : fix compile warnings --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
---|---|---|
.devops | ||
.github | ||
ci | ||
common | ||
docs | ||
examples | ||
gguf-py | ||
grammars | ||
media | ||
models | ||
pocs | ||
prompts | ||
scripts | ||
spm-headers | ||
tests | ||
.clang-tidy | ||
.dockerignore | ||
.ecrc | ||
.editorconfig | ||
.flake8 | ||
.gitignore | ||
.pre-commit-config.yaml | ||
build.zig | ||
CMakeLists.txt | ||
convert-falcon-hf-to-gguf.py | ||
convert-gptneox-hf-to-gguf.py | ||
convert-llama-7b-pth-to-gguf.py | ||
convert-llama-ggmlv3-to-gguf.py | ||
convert-llama-hf-to-gguf.py | ||
convert-lora-to-ggml.py | ||
convert.py | ||
flake.lock | ||
flake.nix | ||
ggml-alloc.c | ||
ggml-alloc.h | ||
ggml-cuda.cu | ||
ggml-cuda.h | ||
ggml-metal.h | ||
ggml-metal.m | ||
ggml-metal.metal | ||
ggml-mpi.c | ||
ggml-mpi.h | ||
ggml-opencl.cpp | ||
ggml-opencl.h | ||
ggml.c | ||
ggml.h | ||
k_quants.c | ||
k_quants.h | ||
LICENSE | ||
llama.cpp | ||
llama.h | ||
Makefile | ||
Package.swift | ||
README.md | ||
requirements.txt | ||
run_with_preset.py | ||
SHA256SUMS |
llama.cpp
Inference of LLaMA model in pure C/C++
Hot topics
-
IMPORTANT: Tokenizer fixes and API change (developers and projects using
llama.cpp
built-in tokenization must read): https://github.com/ggerganov/llama.cpp/pull/2810 -
GGUFv2 adds support for 64-bit sizes + backwards compatible: https://github.com/ggerganov/llama.cpp/pull/2821
-
Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717
-
A new file format has been introduced: GGUF
Last revision compatible with the old format: dadbed9
Current
master
should be considered in Beta - expect some issues for a few days!Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
Issues with non-GGUF models will be considered with low priority!
Table of Contents
- Description
-
Usage
- Get the Code
- Build
- BLAS Build
- Prepare Data & Run
- Memory/Disk Requirements
- Quantization
- Interactive mode
- Constrained output with grammars
- Instruction mode with Alpaca
- Using OpenLLaMA
- Using GPT4All
- Using Pygmalion 7B & Metharme 7B
- Obtaining the Facebook LLaMA original model and Stanford Alpaca model data
- Verifying the model files
- Seminal papers and background on the models
- Perplexity (measuring model quality)
- Android
- Docker
- Contributing
- Coding guidelines
- Docs
Description
The main goal of llama.cpp
is to run the LLaMA model using 4-bit integer quantization on a MacBook
- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2 and AVX512 support for x86 architectures
- Mixed F16 / F32 precision
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
- CUDA, Metal and OpenCL GPU backend support
The original implementation of llama.cpp
was hacked in an evening.
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
as the main playground for developing new features for the ggml library.
Supported platforms:
- Mac OS
- Linux
- Windows (via CMake)
- Docker
Supported models:
- LLaMA 🦙
- LLaMA 2 🦙🦙
- Falcon
- Alpaca
- GPT4All
- Chinese LLaMA / Alpaca and Chinese LLaMA-2 / Alpaca-2
- Vigogne (French)
- Vicuna
- Koala
- OpenBuddy 🐶 (Multilingual)
- Pygmalion 7B / Metharme 7B
- WizardLM
- Baichuan-7B and its derivations (such as baichuan-7b-sft)
- Aquila-7B / AquilaChat-7B
Bindings:
- Python: abetlen/llama-cpp-python
- Go: go-skynet/go-llama.cpp
- Node.js: hlhr202/llama-node
- Ruby: yoshoku/llama_cpp.rb
- Rust: mdrokz/rust-llama.cpp
- C#/.NET: SciSharp/LLamaSharp
- Scala 3: donderom/llm4s
- Clojure: phronmophobic/llama.clj
UI:
Here is a typical run using LLaMA v2 13B on M2 Ultra:
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S: Darwin
I UNAME_P: arm
I UNAME_M: arm64
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
I LDFLAGS: -framework Accelerate
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
make: Nothing to be done for `default'.
main: build = 1041 (cf658ad)
main: seed = 1692823051
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
llama_model_loader: - type f32: 81 tensors
llama_model_loader: - type q4_0: 281 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_print_meta: format = GGUF V1 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_ctx = 512
llm_load_print_meta: n_embd = 5120
llm_load_print_meta: n_head = 40
llm_load_print_meta: n_head_kv = 40
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff = 13824
llm_load_print_meta: freq_base = 10000.0
llm_load_print_meta: freq_scale = 1
llm_load_print_meta: model type = 13B
llm_load_print_meta: model ftype = mostly Q4_0
llm_load_print_meta: model size = 13.02 B
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.11 MB
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size = 400.00 MB
llama_new_context_with_model: compute buffer total size = 75.41 MB
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
Building a website can be done in 10 simple steps:
Step 1: Find the right website platform.
Step 2: Choose your domain name and hosting plan.
Step 3: Design your website layout.
Step 4: Write your website content and add images.
Step 5: Install security features to protect your site from hackers or spammers
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
Step 7: Test it again with people who are not related to you personally – friends or family members will work just fine!
Step 8: Start marketing and promoting the website via social media channels or paid ads
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
How does a Website Work?
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit – whether it’s an image or text file (like PDFs). In order for someone else’s browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols – this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
How to
llama_print_timings: load time = 576.45 ms
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
llama_print_timings: total time = 25431.49 ms
And here is another demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook:
https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4
Usage
Here are the steps for the LLaMA-7B model.
Get the Code
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
Build
In order to build llama.cpp you have three different options.
-
Using
make
:-
On Linux or MacOS:
make
-
On Windows:
- Download the latest fortran version of w64devkit.
- Extract
w64devkit
on your pc. - Run
w64devkit.exe
. - Use the
cd
command to reach thellama.cpp
folder. - From here you can run:
make
-
-
Using
CMake
:mkdir build cd build cmake .. cmake --build . --config Release
-
Using
Zig
(version 0.11 or later):Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C, it's also possible to cross compile for other operating systems and architectures:
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
The
zig targets
command will give you valid options to use. -
Using
gmake
(FreeBSD):-
Install and activate DRM in FreeBSD
-
Add your user to video group
-
Install compilation dependencies.
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \ opencl clblast openblas gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
Notes: With this packages you can build llama.cpp with OPENBLAS and CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read the instructions for use and activate this options in this document below.
-
Metal Build
Using Metal allows the computation to be executed on the GPU for Apple devices:
-
Using
make
:LLAMA_METAL=1 make
-
Using
CMake
:mkdir build-metal cd build-metal cmake -DLLAMA_METAL=ON .. cmake --build . --config Release
When built with Metal support, you can enable GPU inference with the --gpu-layers|-ngl
command-line argument.
Any value larger than 0 will offload the computation to the GPU. For example:
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
MPI Build
MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.
First you will need MPI libraries installed on your system. The two most popular (only?) options are MPICH and OpenMPI. Either can be installed with a package manager (apt
, Homebrew, MacPorts, etc).
Next you will need to build the project with LLAMA_MPI
set to true on all machines; if you're building with make
, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):
-
Using
make
:make CC=mpicc CXX=mpicxx LLAMA_MPI=1
-
Using
CMake
:cmake -S . -B build -DLLAMA_MPI=ON
Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.
Next, ensure password-less SSH access to each machine from the primary host, and create a hostfile
with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".
Here is an example hostfile:
192.168.0.1:2
malvolio.local:1
The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.
Finally, you're ready to run a computation using mpirun
:
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:
-
Accelerate Framework:
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
-
OpenBLAS:
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
-
Using
make
:-
On Linux:
make LLAMA_OPENBLAS=1
-
On Windows:
-
Download the latest fortran version of w64devkit.
-
Download the latest version of OpenBLAS for Windows.
-
Extract
w64devkit
on your pc. -
From the OpenBLAS zip that you just downloaded copy
libopenblas.a
, located inside thelib
folder, insidew64devkit\x86_64-w64-mingw32\lib
. -
From the same OpenBLAS zip copy the content of the
include
folder insidew64devkit\x86_64-w64-mingw32\include
. -
Run
w64devkit.exe
. -
Use the
cd
command to reach thellama.cpp
folder. -
From here you can run:
make LLAMA_OPENBLAS=1
-
-
-
Using
CMake
on Linux:mkdir build cd build cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS cmake --build . --config Release
-
-
BLIS
Check BLIS.md for more information.
-
Intel MKL
By default,
LLAMA_BLAS_VENDOR
is set toGeneric
, so if you already sourced intel environment script and assign-DLLAMA_BLAS=ON
in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:mkdir build cd build cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx cmake --build . --config Release
-
cuBLAS
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: CUDA Toolkit.
-
Using
make
:make LLAMA_CUBLAS=1
-
Using
CMake
:mkdir build cd build cmake .. -DLLAMA_CUBLAS=ON cmake --build . --config Release
The environment variable
CUDA_VISIBLE_DEVICES
can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance: -
Option | Legal values | Default | Description |
---|---|---|---|
LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
-
hipBLAS
This provide BLAS acceleation on HIP supported GPU like AMD GPU. Make sure to have ROCm installed. You can download it from your Linux distro's package manager or from here: ROCm Quick Start (Linux). Windows support is coming soon...
- Using
make
:make LLAMA_HIPBLAS=1
- Using
CMake
:mkdir build cd build CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON cmake --build .
The environment variable
HIP_VISIBLE_DEVICES
can be used to specify which GPU(s) will be used. If your GPU is not officialy supported you can use the environment variable [HSA_OVERRIDE_GFX_VERSION
] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3. The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):Option Legal values Default Description LLAMA_CUDA_DMMV_X Positive integer >= 32 32 Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. LLAMA_CUDA_MMV_Y Positive integer 1 Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. LLAMA_CUDA_KQUANTS_ITER 1 or 2 2 Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. - Using
-
CLBlast
OpenCL acceleration is provided by the matrix multiplication kernels from the CLBlast project and custom kernels for ggml that can generate tokens on the GPU.
You will need the OpenCL SDK.
-
For Ubuntu or Debian, the packages
opencl-headers
,ocl-icd
may be needed. -
Installing the OpenCL SDK from source
git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git mkdir OpenCL-SDK/build cd OpenCL-SDK/build cmake .. -DBUILD_DOCS=OFF \ -DBUILD_EXAMPLES=OFF \ -DBUILD_TESTING=OFF \ -DOPENCL_SDK_BUILD_SAMPLES=OFF \ -DOPENCL_SDK_TEST_SAMPLES=OFF cmake --build . --config Release cmake --install . --prefix /some/path
Installing CLBlast: it may be found in your operating system's packages.
-
If not, then installing from source:
git clone https://github.com/CNugteren/CLBlast.git mkdir CLBlast/build cd CLBlast/build cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF cmake --build . --config Release cmake --install . --prefix /some/path
Where
/some/path
is where the built library will be installed (default is/usr/local
).
Building:
- Build with make:
make LLAMA_CLBLAST=1
- CMake:
mkdir build cd build cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path cmake --build . --config Release
Running:
The CLBlast build supports
--gpu-layers|-ngl
like the CUDA version does.To select the correct platform (driver) and device (GPU), you can use the environment variables
GGML_OPENCL_PLATFORM
andGGML_OPENCL_DEVICE
. The selection can be a number (starting from 0) or a text string to search:GGML_OPENCL_PLATFORM=1 ./main ... GGML_OPENCL_DEVICE=2 ./main ... GGML_OPENCL_PLATFORM=Intel ./main ... GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful. Using the variables it is possible to select a CPU-based driver as well, if so desired.
You can get a list of platforms and devices from the
clinfo -l
command, etc. -
Prepare Data & Run
# obtain the original LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
# [Optional] for models using BPE tokenizers
ls ./models
65B 30B 13B 7B vocab.json
# install Python dependencies
python3 -m pip install -r requirements.txt
# convert the 7B model to ggml FP16 format
python3 convert.py models/7B/
# [Optional] for models using BPE tokenizers
python convert.py models/7B/ --vocabtype bpe
# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
# run the inference
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
When running the larger models, make sure you have enough disk space to store all the intermediate files.
Memory/Disk Requirements
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
Model | Original size | Quantized size (4-bit) |
---|---|---|
7B | 13 GB | 3.9 GB |
13B | 24 GB | 7.8 GB |
30B | 60 GB | 19.5 GB |
65B | 120 GB | 38.5 GB |
Quantization
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
(outdated)
Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
---|---|---|---|---|---|---|---|
7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
Perplexity (measuring model quality)
You can use the perplexity
example to measure perplexity over a given prompt (lower perplexity is better).
For more information, see https://huggingface.co/docs/transformers/perplexity.
The perplexity measurements in table above are done against the wikitext2
test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
Interactive mode
If you want a more ChatGPT-like experience, you can run in interactive mode by passing -i
as a parameter.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a reverse prompt with the parameter -r "reverse prompt string"
. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass -r "Alice:"
.
Here is an example of a few-shot interaction, invoked with the command
# default arguments using a 7B model
./examples/chat.sh
# advanced chat with a 13B model
./examples/chat-13B.sh
# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
Note the use of --color
to distinguish between user input and generated text. Other parameters are explained in more detail in the README for the main
example program.
Persistent Interaction
The prompt, user inputs, and model generations can be saved and resumed across calls to ./main
by leveraging --prompt-cache
and --prompt-cache-all
. The ./examples/chat-persistent.sh
script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as chat-13B.sh
. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (PROMPT_TEMPLATE
) and the model file.
# Start a new chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
# Resume that chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
# Start a different chat with the same prompt/model
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh
# Different prompt cache for different prompt/model
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
Constrained output with grammars
llama.cpp
supports grammars to constrain model output. For example, you can force the model to output JSON only:
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
The grammars/
folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.
Instruction mode with Alpaca
- First, download the
ggml
Alpaca model into the./models
folder - Run the
main
tool like this:
./examples/alpaca.sh
Sample run:
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to LLaMa.
- If you want to submit another line, end your input in '\'.
Below is an instruction that describes a task. Write a response that appropriately completes the request.
> How many letters are there in the English alphabet?
There 26 letters in the English Alphabet
> What is the most common way of transportation in Amsterdam?
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
Using OpenLLaMA
OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.
- Download the 3B, 7B, or 13B model from Hugging Face.
- Convert the model to ggml FP16 format using
python convert.py <path to OpenLLaMA directory>
Using GPT4All
Note: these instructions are likely obsoleted by the GGUF update
- Obtain the
tokenizer.model
file from LLaMA model and put it tomodels
- Obtain the
added_tokens.json
file from Alpaca model and put it tomodels
- Obtain the
gpt4all-lora-quantized.bin
file from GPT4All model and put it tomodels/gpt4all-7B
- It is distributed in the old
ggml
format which is now obsoleted - You have to convert it to the new format using
convert.py
:
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
-
You can now use the newly generated
models/gpt4all-7B/ggml-model-q4_0.bin
model in exactly the same way as all other models -
The newer GPT4All-J model is not yet supported!
Using Pygmalion 7B & Metharme 7B
- Obtain the LLaMA weights
- Obtain the Pygmalion 7B or Metharme 7B XOR encoded weights
- Convert the LLaMA model with the latest HF convert script
- Merge the XOR files with the converted LLaMA weights by running the xor_codec script
- Convert to
ggml
format using theconvert.py
script in this repo:
python3 convert.py pygmalion-7b/ --outtype q4_1
The Pygmalion 7B & Metharme 7B weights are saved in bfloat16 precision. If you wish to convert to
ggml
without quantizating, please specify the--outtype
asf32
instead off16
.
Obtaining the Facebook LLaMA original model and Stanford Alpaca model data
- Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.
- The LLaMA models are officially distributed by Facebook and will never be provided through this repository.
- Refer to Facebook's LLaMA repository if you need to request access to the model data.
Obtaining and using the Facebook LLaMA 2 model
- Refer to Facebook's LLaMA download page if you want to access the model data.
- Alternatively, if you want to save time and space, you can download already converted and quantized models from TheBloke, including:
- Specify
-eps 1e-5
for best generation quality - Specify
-gqa 8
for 70B models to work
Verifying the model files
Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
- The following python script will verify if you have all possible latest files in your self-installed
./models
subdirectory:
# run the verification script
./scripts/verify-checksum-models.py
- On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed
./models
subdirectory:- On Linux:
sha256sum --ignore-missing -c SHA256SUMS
- on macOS:
shasum -a 256 --ignore-missing -c SHA256SUMS
- On Linux:
Seminal papers and background on the models
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
- LLaMA:
- GPT-3
- GPT-3.5 / InstructGPT / ChatGPT:
How to run
- Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
- Run
./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw
- Output:
perplexity : calculating perplexity over 655 chunks
24.43 seconds per pass - ETA 4.45 hours
[1]4.5970,[2]5.1807,[3]6.0382,...
And after 4.45 hours, you will have the final perplexity.
Android
Building the Project using Android NDK
You can easily run llama.cpp
on Android device with termux.
First, install the essential packages for termux:
pkg install clang wget git cmake
Second, obtain the Android NDK and then build with CMake:
$ mkdir build-android
$ cd build-android
$ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make
Install termux on your device and run termux-setup-storage
to get access to your SD card.
Finally, copy the llama
binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
Building the Project using Termux (F-Droid)
Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card.
Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU.
If you opt to utilize OpenBLAS, you'll need to install the corresponding package.
apt install libopenblas
Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages:
apt install ocl-icd opencl-headers opencl-clhpp clinfo
In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below:
cmake .
make
cp libclblast.so* $PREFIX/lib
cp ./include/clblast.h ../llama.cpp
Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below:
cp /data/data/com.termux/files/usr/include/openblas/cblas.h .
cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h .
make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice)
Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below:
GGML_OPENCL_PLATFORM=0
GGML_OPENCL_DEVICE=0
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH
(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )
For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.
Place your desired model into the ~/llama.cpp/models/
directory and execute the ./main (...)
script.
Docker
Prerequisites
- Docker must be installed and running on your system.
- Create a folder to store big models & intermediate files (ex. /llama/models)
Images
We have two Docker images available for this project:
ghcr.io/ggerganov/llama.cpp:full
: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.ghcr.io/ggerganov/llama.cpp:light
: This image only includes the main executable file.
Usage
The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
Replace /path/to/models
below with the actual path where you downloaded the models.
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
On completion, you are ready to play!
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
or with a light image:
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
Docker With CUDA
Assuming one has the nvidia-container-toolkit properly installed on Linux, or is using a GPU enabled cloud, cuBLAS
should be accessible inside the container.
Building Locally
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
You may want to pass in some different ARGS
, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
The defaults are:
CUDA_VERSION
set to11.7.1
CUDA_DOCKER_ARCH
set toall
The resulting images, are essentially the same as the non-CUDA images:
local/llama.cpp:full-cuda
: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.local/llama.cpp:light-cuda
: This image only includes the main executable file.
Usage
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the --gpus
flag. You will also want to use the --n-gpu-layers
flag.
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
Contributing
- Contributors can open PRs
- Collaborators can push to branches in the
llama.cpp
repo and merge PRs into themaster
branch - Collaborators will be invited based on contributions
- Any help with managing issues and PRs is very appreciated!
- Make sure to read this: Inference at the edge
- A bit of backstory for those who are interested: Changelog podcast
Coding guidelines
- Avoid adding third-party dependencies, extra files, extra headers, etc.
- Always consider cross-compatibility with other operating systems and architectures
- Avoid fancy looking modern STL constructs, use basic
for
loops, avoid templates, keep it simple - There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line,
void * ptr
,int & a
- See good first issues for tasks suitable for first contributions