mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 19:34:35 +00:00
d1031cf49c
* sampling : refactor init to use llama_sampling_params * llama : combine repetition, frequency and presence penalties in 1 call * examples : remove embd-input and gptneox-wip * sampling : rename penalty params + reduce size of "prev" vector * sampling : add llama_sampling_print helper * sampling : hide prev behind API and apply #3661 ggml-ci
148 lines
5.8 KiB
C++
148 lines
5.8 KiB
C++
#pragma once
|
|
|
|
// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
|
|
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
|
|
inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
|
|
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
|
|
|
for (int i = 0; i < N; i += n_batch) {
|
|
int n_eval = N - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
|
if (llama_decode(ctx_llama, batch)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
*n_past += n_eval;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
|
int N = (int) tokens.size();
|
|
for (int i = 0; i < N; i += n_batch) {
|
|
int n_eval = (int) tokens.size() - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
*n_past += n_eval;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
|
std::vector<llama_token> tokens;
|
|
tokens.push_back(id);
|
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
|
}
|
|
|
|
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
|
std::string str2 = str;
|
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
|
|
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
|
return true;
|
|
}
|
|
|
|
// TODO: use common/sampling.h
|
|
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
|
auto & sparams = params.sparams;
|
|
|
|
// out of user input, sample next token
|
|
const float temp = sparams.temp;
|
|
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
|
|
const float top_p = sparams.top_p;
|
|
const float tfs_z = sparams.tfs_z;
|
|
const float typical_p = sparams.typical_p;
|
|
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
|
|
// const float repeat_penalty = sparams.repeat_penalty;
|
|
// const float alpha_presence = sparams.presence_penalty;
|
|
// const float alpha_frequency = sparams.frequency_penalty;
|
|
const int mirostat = sparams.mirostat;
|
|
const float mirostat_tau = sparams.mirostat_tau;
|
|
const float mirostat_eta = sparams.mirostat_eta;
|
|
// const bool penalize_nl = sparams.penalize_nl;
|
|
|
|
llama_token id = 0;
|
|
{
|
|
auto logits = llama_get_logits(ctx_llama);
|
|
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
|
|
|
|
// Apply params.logit_bias map
|
|
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
|
logits[it->first] += it->second;
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// TODO: Apply penalties
|
|
// float nl_logit = logits[llama_token_nl(ctx)];
|
|
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
|
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
// last_n_repeat, repeat_penalty);
|
|
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
// last_n_repeat, alpha_frequency, alpha_presence);
|
|
// if (!penalize_nl) {
|
|
// logits[llama_token_nl(ctx)] = nl_logit;
|
|
// }
|
|
|
|
if (temp <= 0) {
|
|
// Greedy sampling
|
|
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
|
|
} else {
|
|
if (mirostat == 1) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
} else if (mirostat == 2) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
} else {
|
|
// Temperature sampling
|
|
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
|
|
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
|
|
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
|
|
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
|
|
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
|
id = llama_sample_token(ctx_llama, &candidates_p);
|
|
}
|
|
}
|
|
}
|
|
|
|
return id;
|
|
}
|
|
|
|
inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
|
|
int id = sample_id(ctx_llama, params);
|
|
static std::string ret;
|
|
if (id == llama_token_eos(ctx_llama)) {
|
|
ret = "</s>";
|
|
} else {
|
|
ret = llama_token_to_piece(ctx_llama, id);
|
|
}
|
|
eval_id(ctx_llama, id, n_past);
|
|
return ret.c_str();
|
|
}
|