mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 11:40:17 +00:00
408 lines
15 KiB
Python
408 lines
15 KiB
Python
import pytest
|
||
import time
|
||
from openai import OpenAI
|
||
from utils import *
|
||
|
||
server = ServerPreset.tinyllama2()
|
||
|
||
|
||
@pytest.fixture(scope="module", autouse=True)
|
||
def create_server():
|
||
global server
|
||
server = ServerPreset.tinyllama2()
|
||
|
||
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated,return_tokens", [
|
||
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False, False),
|
||
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False, True),
|
||
])
|
||
def test_completion(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool, return_tokens: bool):
|
||
global server
|
||
server.start()
|
||
res = server.make_request("POST", "/completion", data={
|
||
"n_predict": n_predict,
|
||
"prompt": prompt,
|
||
"return_tokens": return_tokens,
|
||
})
|
||
assert res.status_code == 200
|
||
assert res.body["timings"]["prompt_n"] == n_prompt
|
||
assert res.body["timings"]["predicted_n"] == n_predicted
|
||
assert res.body["truncated"] == truncated
|
||
assert type(res.body["has_new_line"]) == bool
|
||
assert match_regex(re_content, res.body["content"])
|
||
if return_tokens:
|
||
assert len(res.body["tokens"]) > 0
|
||
assert all(type(tok) == int for tok in res.body["tokens"])
|
||
else:
|
||
assert res.body["tokens"] == []
|
||
|
||
|
||
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [
|
||
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False),
|
||
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False),
|
||
])
|
||
def test_completion_stream(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool):
|
||
global server
|
||
server.start()
|
||
res = server.make_stream_request("POST", "/completion", data={
|
||
"n_predict": n_predict,
|
||
"prompt": prompt,
|
||
"stream": True,
|
||
})
|
||
content = ""
|
||
for data in res:
|
||
assert "stop" in data and type(data["stop"]) == bool
|
||
if data["stop"]:
|
||
assert data["timings"]["prompt_n"] == n_prompt
|
||
assert data["timings"]["predicted_n"] == n_predicted
|
||
assert data["truncated"] == truncated
|
||
assert data["stop_type"] == "limit"
|
||
assert type(data["has_new_line"]) == bool
|
||
assert "generation_settings" in data
|
||
assert server.n_predict is not None
|
||
assert data["generation_settings"]["n_predict"] == min(n_predict, server.n_predict)
|
||
assert data["generation_settings"]["seed"] == server.seed
|
||
assert match_regex(re_content, content)
|
||
else:
|
||
assert len(data["tokens"]) > 0
|
||
assert all(type(tok) == int for tok in data["tokens"])
|
||
content += data["content"]
|
||
|
||
|
||
def test_completion_stream_vs_non_stream():
|
||
global server
|
||
server.start()
|
||
res_stream = server.make_stream_request("POST", "/completion", data={
|
||
"n_predict": 8,
|
||
"prompt": "I believe the meaning of life is",
|
||
"stream": True,
|
||
})
|
||
res_non_stream = server.make_request("POST", "/completion", data={
|
||
"n_predict": 8,
|
||
"prompt": "I believe the meaning of life is",
|
||
})
|
||
content_stream = ""
|
||
for data in res_stream:
|
||
content_stream += data["content"]
|
||
assert content_stream == res_non_stream.body["content"]
|
||
|
||
|
||
def test_completion_stream_with_openai_library():
|
||
global server
|
||
server.start()
|
||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||
res = client.completions.create(
|
||
model="davinci-002",
|
||
prompt="I believe the meaning of life is",
|
||
max_tokens=8,
|
||
)
|
||
assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
|
||
assert res.choices[0].finish_reason == "length"
|
||
assert res.choices[0].text is not None
|
||
assert match_regex("(going|bed)+", res.choices[0].text)
|
||
|
||
|
||
def test_completion_with_openai_library():
|
||
global server
|
||
server.start()
|
||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||
res = client.completions.create(
|
||
model="davinci-002",
|
||
prompt="I believe the meaning of life is",
|
||
max_tokens=8,
|
||
stream=True,
|
||
)
|
||
output_text = ''
|
||
for data in res:
|
||
choice = data.choices[0]
|
||
if choice.finish_reason is None:
|
||
assert choice.text is not None
|
||
output_text += choice.text
|
||
assert match_regex("(going|bed)+", output_text)
|
||
|
||
|
||
@pytest.mark.parametrize("n_slots", [1, 2])
|
||
def test_consistent_result_same_seed(n_slots: int):
|
||
global server
|
||
server.n_slots = n_slots
|
||
server.start()
|
||
last_res = None
|
||
for _ in range(4):
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"seed": 42,
|
||
"temperature": 0.0,
|
||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||
})
|
||
if last_res is not None:
|
||
assert res.body["content"] == last_res.body["content"]
|
||
last_res = res
|
||
|
||
|
||
@pytest.mark.parametrize("n_slots", [1, 2])
|
||
def test_different_result_different_seed(n_slots: int):
|
||
global server
|
||
server.n_slots = n_slots
|
||
server.start()
|
||
last_res = None
|
||
for seed in range(4):
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"seed": seed,
|
||
"temperature": 1.0,
|
||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||
})
|
||
if last_res is not None:
|
||
assert res.body["content"] != last_res.body["content"]
|
||
last_res = res
|
||
|
||
# TODO figure why it don't work with temperature = 1
|
||
# @pytest.mark.parametrize("temperature", [0.0, 1.0])
|
||
@pytest.mark.parametrize("n_batch", [16, 32])
|
||
@pytest.mark.parametrize("temperature", [0.0])
|
||
def test_consistent_result_different_batch_size(n_batch: int, temperature: float):
|
||
global server
|
||
server.n_batch = n_batch
|
||
server.start()
|
||
last_res = None
|
||
for _ in range(4):
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"seed": 42,
|
||
"temperature": temperature,
|
||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||
})
|
||
if last_res is not None:
|
||
assert res.body["content"] == last_res.body["content"]
|
||
last_res = res
|
||
|
||
|
||
@pytest.mark.skip(reason="This test fails on linux, need to be fixed")
|
||
def test_cache_vs_nocache_prompt():
|
||
global server
|
||
server.start()
|
||
res_cache = server.make_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"seed": 42,
|
||
"temperature": 1.0,
|
||
"cache_prompt": True,
|
||
})
|
||
res_no_cache = server.make_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"seed": 42,
|
||
"temperature": 1.0,
|
||
"cache_prompt": False,
|
||
})
|
||
assert res_cache.body["content"] == res_no_cache.body["content"]
|
||
|
||
|
||
def test_completion_with_tokens_input():
|
||
global server
|
||
server.temperature = 0.0
|
||
server.start()
|
||
prompt_str = "I believe the meaning of life is"
|
||
res = server.make_request("POST", "/tokenize", data={
|
||
"content": prompt_str,
|
||
"add_special": True,
|
||
})
|
||
assert res.status_code == 200
|
||
tokens = res.body["tokens"]
|
||
|
||
# single completion
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": tokens,
|
||
})
|
||
assert res.status_code == 200
|
||
assert type(res.body["content"]) == str
|
||
|
||
# batch completion
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": [tokens, tokens],
|
||
})
|
||
assert res.status_code == 200
|
||
assert type(res.body) == list
|
||
assert len(res.body) == 2
|
||
assert res.body[0]["content"] == res.body[1]["content"]
|
||
|
||
# mixed string and tokens
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": [tokens, prompt_str],
|
||
})
|
||
assert res.status_code == 200
|
||
assert type(res.body) == list
|
||
assert len(res.body) == 2
|
||
assert res.body[0]["content"] == res.body[1]["content"]
|
||
|
||
# mixed string and tokens in one sequence
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": [1, 2, 3, 4, 5, 6, prompt_str, 7, 8, 9, 10, prompt_str],
|
||
})
|
||
assert res.status_code == 200
|
||
assert type(res.body["content"]) == str
|
||
|
||
|
||
@pytest.mark.parametrize("n_slots,n_requests", [
|
||
(1, 3),
|
||
(2, 2),
|
||
(2, 4),
|
||
(4, 2), # some slots must be idle
|
||
(4, 6),
|
||
])
|
||
def test_completion_parallel_slots(n_slots: int, n_requests: int):
|
||
global server
|
||
server.n_slots = n_slots
|
||
server.temperature = 0.0
|
||
server.start()
|
||
|
||
PROMPTS = [
|
||
("Write a very long book.", "(very|special|big)+"),
|
||
("Write another a poem.", "(small|house)+"),
|
||
("What is LLM?", "(Dad|said)+"),
|
||
("The sky is blue and I love it.", "(climb|leaf)+"),
|
||
("Write another very long music lyrics.", "(friends|step|sky)+"),
|
||
("Write a very long joke.", "(cat|Whiskers)+"),
|
||
]
|
||
def check_slots_status():
|
||
should_all_slots_busy = n_requests >= n_slots
|
||
time.sleep(0.1)
|
||
res = server.make_request("GET", "/slots")
|
||
n_busy = sum([1 for slot in res.body if slot["is_processing"]])
|
||
if should_all_slots_busy:
|
||
assert n_busy == n_slots
|
||
else:
|
||
assert n_busy <= n_slots
|
||
|
||
tasks = []
|
||
for i in range(n_requests):
|
||
prompt, re_content = PROMPTS[i % len(PROMPTS)]
|
||
tasks.append((server.make_request, ("POST", "/completion", {
|
||
"prompt": prompt,
|
||
"seed": 42,
|
||
"temperature": 1.0,
|
||
})))
|
||
tasks.append((check_slots_status, ()))
|
||
results = parallel_function_calls(tasks)
|
||
|
||
# check results
|
||
for i in range(n_requests):
|
||
prompt, re_content = PROMPTS[i % len(PROMPTS)]
|
||
res = results[i]
|
||
assert res.status_code == 200
|
||
assert type(res.body["content"]) == str
|
||
assert len(res.body["content"]) > 10
|
||
# FIXME: the result is not deterministic when using other slot than slot 0
|
||
# assert match_regex(re_content, res.body["content"])
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"prompt,n_predict,response_fields",
|
||
[
|
||
("I believe the meaning of life is", 8, []),
|
||
("I believe the meaning of life is", 32, ["content", "generation_settings/n_predict", "prompt"]),
|
||
],
|
||
)
|
||
def test_completion_response_fields(
|
||
prompt: str, n_predict: int, response_fields: list[str]
|
||
):
|
||
global server
|
||
server.start()
|
||
res = server.make_request(
|
||
"POST",
|
||
"/completion",
|
||
data={
|
||
"n_predict": n_predict,
|
||
"prompt": prompt,
|
||
"response_fields": response_fields,
|
||
},
|
||
)
|
||
assert res.status_code == 200
|
||
assert "content" in res.body
|
||
assert len(res.body["content"])
|
||
if len(response_fields):
|
||
assert res.body["generation_settings/n_predict"] == n_predict
|
||
assert res.body["prompt"] == "<s> " + prompt
|
||
assert isinstance(res.body["content"], str)
|
||
assert len(res.body) == len(response_fields)
|
||
else:
|
||
assert len(res.body)
|
||
assert "generation_settings" in res.body
|
||
|
||
|
||
def test_n_probs():
|
||
global server
|
||
server.start()
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"n_probs": 10,
|
||
"temperature": 0.0,
|
||
"n_predict": 5,
|
||
})
|
||
assert res.status_code == 200
|
||
assert "completion_probabilities" in res.body
|
||
assert len(res.body["completion_probabilities"]) == 5
|
||
for tok in res.body["completion_probabilities"]:
|
||
assert "id" in tok and tok["id"] > 0
|
||
assert "token" in tok and type(tok["token"]) == str
|
||
assert "logprob" in tok and tok["logprob"] <= 0.0
|
||
assert "bytes" in tok and type(tok["bytes"]) == list
|
||
assert len(tok["top_logprobs"]) == 10
|
||
for prob in tok["top_logprobs"]:
|
||
assert "id" in prob and prob["id"] > 0
|
||
assert "token" in prob and type(prob["token"]) == str
|
||
assert "logprob" in prob and prob["logprob"] <= 0.0
|
||
assert "bytes" in prob and type(prob["bytes"]) == list
|
||
|
||
|
||
def test_n_probs_stream():
|
||
global server
|
||
server.start()
|
||
res = server.make_stream_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"n_probs": 10,
|
||
"temperature": 0.0,
|
||
"n_predict": 5,
|
||
"stream": True,
|
||
})
|
||
for data in res:
|
||
if data["stop"] == False:
|
||
assert "completion_probabilities" in data
|
||
assert len(data["completion_probabilities"]) == 1
|
||
for tok in data["completion_probabilities"]:
|
||
assert "id" in tok and tok["id"] > 0
|
||
assert "token" in tok and type(tok["token"]) == str
|
||
assert "logprob" in tok and tok["logprob"] <= 0.0
|
||
assert "bytes" in tok and type(tok["bytes"]) == list
|
||
assert len(tok["top_logprobs"]) == 10
|
||
for prob in tok["top_logprobs"]:
|
||
assert "id" in prob and prob["id"] > 0
|
||
assert "token" in prob and type(prob["token"]) == str
|
||
assert "logprob" in prob and prob["logprob"] <= 0.0
|
||
assert "bytes" in prob and type(prob["bytes"]) == list
|
||
|
||
|
||
def test_n_probs_post_sampling():
|
||
global server
|
||
server.start()
|
||
res = server.make_request("POST", "/completion", data={
|
||
"prompt": "I believe the meaning of life is",
|
||
"n_probs": 10,
|
||
"temperature": 0.0,
|
||
"n_predict": 5,
|
||
"post_sampling_probs": True,
|
||
})
|
||
assert res.status_code == 200
|
||
assert "completion_probabilities" in res.body
|
||
assert len(res.body["completion_probabilities"]) == 5
|
||
for tok in res.body["completion_probabilities"]:
|
||
assert "id" in tok and tok["id"] > 0
|
||
assert "token" in tok and type(tok["token"]) == str
|
||
assert "prob" in tok and 0.0 < tok["prob"] <= 1.0
|
||
assert "bytes" in tok and type(tok["bytes"]) == list
|
||
assert len(tok["top_probs"]) == 10
|
||
for prob in tok["top_probs"]:
|
||
assert "id" in prob and prob["id"] > 0
|
||
assert "token" in prob and type(prob["token"]) == str
|
||
assert "prob" in prob and 0.0 <= prob["prob"] <= 1.0
|
||
assert "bytes" in prob and type(prob["bytes"]) == list
|
||
# because the test model usually output token with either 100% or 0% probability, we need to check all the top_probs
|
||
assert any(prob["prob"] == 1.0 for prob in tok["top_probs"])
|