mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 02:14:35 +00:00
4760e7cc0b
* sync : ggml (backend v2) (wip) * sync : migrate examples and llama.cpp to dynamic graphs (wip) * sync : update tests + fix max op params to 64 ggml-ci * sync : ggml-cuda ggml-ci * llama : fix save/load state context size ggml-ci * sync : try to fix build on tvOS * sync : pass custom graph sizes in training examples * sync : update graph copies to new ggml API * sync : update sync-ggml.sh with new files * scripts : fix header in sync script * train : fix context size calculations * llama : increase inference graph size up to 4096 nodes * train : allocate grads for backward graphs * train : allocate grads for gb_tmp |
||
---|---|---|
.. | ||
clip.cpp | ||
clip.h | ||
CMakeLists.txt | ||
convert-image-encoder-to-gguf.py | ||
llava-cli.cpp | ||
llava-surgery.py | ||
llava.cpp | ||
llava.h | ||
README.md |
LLaVA
Currently this implementation supports llava-v1.5 variants.
The pre-converted 7b and 13b models are available.
After API is confirmed, more models will be supported / uploaded.
Usage
Build with cmake or run make llava-cli
to build it.
After building, run: ./llava-cli
to see the usage. For example:
./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1
to the command to do so.
Model conversion
- Clone
llava-v15-7b`` and
clip-vit-large-patch14-336`` locally:
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
- Use
llava-surgery.py
to split the LLaVA model to LLaMA and multimodel projector constituents:
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
- Use
convert-image-encoder-to-gguf.py
to convert the LLaVA image encoder to GGUF:
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
- Use
convert.py
to convert the LLaMA part of LLaVA to GGUF:
python ./convert.py ../llava-v1.5-7b
Now both the LLaMA part and the image encoder is in the llava-v1.5-7b
directory.
TODO
- Support non-CPU backend for the image encoding part.
- Support different sampling methods.
- Support more model variants.