mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 03:01:45 +00:00
3778836046
Added falcon main and library based on llama.cpp CPU inference works (getting ~260ms/token on 7B 16 bit falcon) Tested with 7B 16 bit and the two shakespear models (both in 16 bit precisiononly) TODO/WIP: 1) quantization runs, creates a ggjt 3 file but something is wrong with the quantized model binary - even quantization from 16 -> 16 also fails, something is wrong in the tensors produced 2) mmap should work with quantized binaries once 1) is solved 3) CUDA support is mostly there, it's currently disabled (all CPU backend) 4) memory/context caluculations are off, GPU memory calculations are wrong either 5) the python conversion script is pre GGML 1 version (tokens without scores) 6) some stuff is still called "llama", some of it should be renamed to a generic name as it works for both 7) the GGML produced by the current python uses an old ftype method Makfiles: cmake on windows with build tools works the makefile for linux/msys was blind adjusted but not tested yet - possibly missed something Changes to the codebase: * repeat2 has been added to ggml (jploski - https://github.com/ggerganov/ggml/pull/231) including the backward variant (untested, probably fails) * minor changes to work with falcon (name length) * libfalcon is the previous "llama.cpp" and falcon_main is the previous main.cpp
144 lines
5.3 KiB
Python
144 lines
5.3 KiB
Python
# Based on: https://github.com/KerfuffleV2/ggml-falcon/blob/feat-improve-falcon-convert-hf/examples/falcon/convert-hf-to-ggml.py
|
|
# Convert Hugging Face fine-tuned bloom-like models to ggml format
|
|
#
|
|
# Usage:
|
|
#
|
|
# python3 models/convert-h5-to-ggml.py
|
|
#
|
|
# This script is similar to "convert-pt-to-ggml.py"
|
|
#
|
|
|
|
import io
|
|
import os
|
|
import sys
|
|
import struct
|
|
import json
|
|
import code
|
|
import torch
|
|
import numpy as np
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
if len(sys.argv) < 4:
|
|
print("Usage: python convert-hf-to-ggml.py num_parts model_name dir-output [use-f32]")
|
|
print(" num_parts: number of pytorch parts, use 0 if not a multipart model. example: 9")
|
|
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
|
|
print(" dir-output: directory where the output file will be written")
|
|
print(" use-f32: if present, use float32 instead of float16")
|
|
sys.exit(1)
|
|
|
|
num_parts = int(sys.argv[1])
|
|
model_name = sys.argv[2]
|
|
dir_out = sys.argv[3]
|
|
|
|
# make sure the output directory exists
|
|
os.makedirs(dir_out, exist_ok=True)
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
ftype = 1
|
|
if len(sys.argv) > 4:
|
|
ftype = 0
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
|
hparams = config.to_dict()
|
|
|
|
n_head = hparams["n_head"]
|
|
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
|
head_dim = hparams["hidden_size"] // n_head
|
|
print("* Loading model from: ", model_name)
|
|
|
|
fname_out = dir_out + f"/ggml-model-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
|
|
fout = open(fname_out, "wb")
|
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
fout.write(struct.pack("i", hparams["hidden_size"]))
|
|
fout.write(struct.pack("i", n_head))
|
|
fout.write(struct.pack("i", n_head_kv))
|
|
fout.write(struct.pack("i", hparams["n_layer"]))
|
|
fout.write(struct.pack("i", 40 if "n_head_kv" in hparams else 7))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
|
byte_encoder = bytes_to_unicode()
|
|
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
|
|
|
for i in range(hparams["vocab_size"]):
|
|
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
if num_parts == 0:
|
|
partnames= ('pytorch_model.bin',)
|
|
else:
|
|
partnames = (f'pytorch_model-{n:05}-of-{num_parts:05}.bin' for n in range(1, num_parts + 1))
|
|
for partname in partnames:
|
|
filename = f'{model_name}/{partname}'
|
|
print(f'\n* Loading part: {partname}')
|
|
model = torch.load(filename, map_location = 'cpu')
|
|
for name in model.keys():
|
|
src = name
|
|
# The original query_key_value tensor contains n_head_kv "kv groups",
|
|
# each consisting of n_head/n_head_kv query weights followed by one key
|
|
# and one value weight (shared by all query heads in the kv group).
|
|
# This layout makes it a big pain to work with in GGML.
|
|
# So we rearrange them here,, so that we have n_head query weights
|
|
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
|
# in contiguous fashion.
|
|
|
|
if "query_key_value" in src:
|
|
qkv = model[src].view(
|
|
n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
|
|
|
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
|
|
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
|
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
|
|
|
model[src] = torch.cat((q,k,v)).reshape_as(model[src])
|
|
data = model[src].squeeze()
|
|
n_dims = len(data.shape)
|
|
# default type is fp32
|
|
ftype_cur = 1 if ftype == 1 and n_dims > 1 else 0
|
|
data = data.to(dtype = torch.float16 if ftype_cur == 1 else torch.float32).numpy()
|
|
print(f' |', name, data.shape, '->', data.dtype)
|
|
# header
|
|
str = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
fout.write(str)
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fname_out)
|
|
print("") |