mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 21:34:36 +00:00
557410b8f0
* llama : greatly reduce logits memory usage * llama : more compact state saving and reloading * llama : fix lctx.n_outputs not being set before building graph * perplexity : adapt to the logits API changes * perplexity : fix Winogrande, use correct logits for second choice start The first logits used to evaluate the second choice were not from the end of the common prefix; instead, they were the logits from the end of the first choice. This has been corrected. The previous implementation sometimes had outliers in the scores of choices for some tasks, and the logic to skip choices words in the log-likelihood evaluation probably was an attempt to reduce those, but it was complex and didn't quite seem to be the right thing. This is simpler now, and the outlier scores aren't there anymore. * perplexity : normalize spaces and punctuation in Winogrande sentences * llama : fix embedding conditions * llama : fix llama_get_embeddings_ith when the resulting id is 0 * llama : fix wrong n_outputs in llama_set_inputs A mismatch happened when using a smaller n_ubatch than n_batch and then using llama_batch_get_one(). The decision of what n_outputs should be now almost fully depends on how lctx.n_outputs is set in llama_decode_internal. The conditions are simpler this way. * llama : when saving the state, recalculate n_outputs This ensures the correct number of outputs for the entire previous batch is stored in the session file, even when n_ubatch is smaller than n_batch. * llama : fix not-skipping outputs of non-causal models * llama : fix running a batch with n_outputs == 0 It previously worked because lctx.inp_out_ids was not initialized, so it pointed to some garbage address which was somehow still valid when I ran my tests. * llama : keep same graph topology even when n_outputs == 0 * ggml : saner ggml_can_repeat with empty tensors * ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1 * ggml : do not multi-thread ops returning empty tensors * ggml : make ggml_is_empty public and work with views * llama : use a vector for ctx->output_ids * llama : rework reallocation logic for llama_output_reserve Now comparing the actual size with the new total size of the output buffer to allow more efficient enabling and disabling of the embeddings and/or logits output in the future. * ggml : skip empty tensors in all backends * llama : fix llama_output_reserve nullptr deref when new_size is 0 * perplexity : make Winogrande work as it does on master The problems with the Winogrande implementation will need to be fixed in a separate PR to ease review. * llama : clearer error messages for invalid logits or embeddings ids * llama : assert all models that can have inp_out_ids Since the graph topology is now constant, this presence check can be done even when there are no outputs. * llama : assert logits and embd buffers exist before writing to them * llama : handle errors from llama_output_reserve at call sites * perplexity : make hellaswag and multiple-choice outputs identical to master Due to how the KV cache is updated, the logprobs for tokens in a batch are very slightly affected by the other tokens present in the batch, so to make hellaswag and multiple-choice return exactly the same results as on master, the last token of each sequence needs to be evaluated even though its output is not used at all. This will probably be changed back in the future to make these benchmarks a tiny bit faster. * perplexity : fix division by zero when using less than 100 multiple-choice tasks * llama : allow loading state saved with a different ctx size When loading a session file, the context size is now only required to be at least enough to load the KV cells contained in that session file, instead of requiring to use exactly the same context size as when saving. Doing this enables the use-case of extending or shrinking the context size of a saved session. This breaks existing session files because the meaning of kv_buf_size is slightly changed (previously it was the size of the whole KV cache, now it's only the size of the saved part of it). This allows for finer-grained sanity checks when loading in an effort to keep kv_buf_size useful even when the kv_size is changed. * llama : minor ggml-ci * readme : update recent API changes, and warn about Vulkan --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
605 lines
23 KiB
C++
605 lines
23 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <set>
|
|
|
|
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
|
|
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
|
|
|
struct seq_draft {
|
|
bool active = false;
|
|
bool drafting = false;
|
|
bool skip = false;
|
|
|
|
int i_batch_dft = 0;
|
|
std::vector<int> i_batch_tgt;
|
|
|
|
std::vector<llama_token> tokens;
|
|
std::vector<std::vector<llama_token_data>> dists;
|
|
|
|
struct llama_sampling_context * ctx_sampling;
|
|
};
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (params.model_draft.empty()) {
|
|
fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// max number of parallel drafting sequences (i.e. tree branches)
|
|
const int n_seq_dft = params.n_parallel;
|
|
|
|
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
|
|
const float p_split = params.p_split;
|
|
|
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
params.seed = time(NULL);
|
|
}
|
|
std::default_random_engine rng(params.seed);
|
|
std::uniform_real_distribution<> u_dist;
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
log_set_target(log_filename_generator("speculative", "log"));
|
|
LOG_TEE("Log start\n");
|
|
log_dump_cmdline(argc, argv);
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
// init llama.cpp
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
llama_model * model_tgt = NULL;
|
|
llama_model * model_dft = NULL;
|
|
|
|
llama_context * ctx_tgt = NULL;
|
|
llama_context * ctx_dft = NULL;
|
|
|
|
// load the target model
|
|
std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
|
|
|
|
// load the draft model
|
|
params.model = params.model_draft;
|
|
params.n_gpu_layers = params.n_gpu_layers_draft;
|
|
if (params.n_threads_draft > 0) {
|
|
params.n_threads = params.n_threads_draft;
|
|
}
|
|
params.n_threads_batch = params.n_threads_batch_draft;
|
|
std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
|
|
|
|
{
|
|
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
|
const int n_vocab_dft = llama_n_vocab(model_dft);
|
|
const int vocab_diff = n_vocab_tgt > n_vocab_dft
|
|
? n_vocab_tgt - n_vocab_dft
|
|
: n_vocab_dft - n_vocab_tgt;
|
|
|
|
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
|
fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
|
|
fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
|
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
|
return 1;
|
|
}
|
|
|
|
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
|
|
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
|
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
|
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
|
fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
|
|
fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
|
|
llama_token_to_piece(ctx_tgt, i).c_str(),
|
|
llama_token_to_piece(ctx_dft, i).c_str());
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Tokenize the prompt
|
|
const bool add_bos_tgt = llama_should_add_bos_token(model_tgt);
|
|
LOG("add_bos tgt: %d\n", add_bos_tgt);
|
|
|
|
const bool add_bos_dft = llama_should_add_bos_token(model_dft);
|
|
LOG("add_bos dft: %d\n", add_bos_dft);
|
|
|
|
if (add_bos_tgt != add_bos_dft) {
|
|
fprintf(stderr, "%s: error: draft model add_bos must match target model to use speculation but ", __func__);
|
|
fprintf(stderr, "add_bos_dft = %d while add_bos_tgt = %d\n", add_bos_dft, add_bos_tgt);
|
|
return 1;
|
|
}
|
|
|
|
std::vector<llama_token> inp;
|
|
inp = ::llama_tokenize(ctx_tgt, params.prompt, add_bos_tgt, true);
|
|
|
|
const int max_context_size = llama_n_ctx(ctx_tgt);
|
|
const int max_tokens_list_size = max_context_size - 4;
|
|
|
|
if ((int) inp.size() > max_tokens_list_size) {
|
|
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
|
return 1;
|
|
}
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
for (auto id : inp) {
|
|
fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
|
|
}
|
|
|
|
fflush(stderr);
|
|
|
|
const int n_input = inp.size();
|
|
|
|
const auto t_enc_start = ggml_time_us();
|
|
|
|
// eval the prompt with both models
|
|
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
|
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
|
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
|
|
|
|
const auto t_enc_end = ggml_time_us();
|
|
|
|
// the 2 models should have the same vocab
|
|
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
|
|
|
// how many tokens to draft each time
|
|
int n_draft = params.n_draft;
|
|
|
|
int n_predict = 0;
|
|
int n_drafted = 0;
|
|
int n_accept = 0;
|
|
|
|
int n_past_tgt = inp.size();
|
|
int n_past_dft = inp.size();
|
|
|
|
// used to determine end of generation
|
|
bool has_eos = false;
|
|
|
|
// target model sampling context
|
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
|
|
|
// draft sequence data
|
|
std::vector<seq_draft> drafts(n_seq_dft);
|
|
|
|
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
|
if (params.sparams.temp == 0) {
|
|
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
|
|
}
|
|
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
|
|
}
|
|
|
|
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
|
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
|
|
|
|
const auto t_dec_start = ggml_time_us();
|
|
|
|
// sample from the last token of the prompt
|
|
drafts[0].i_batch_tgt.resize(1);
|
|
drafts[0].i_batch_tgt[0] = 0;
|
|
|
|
while (true) {
|
|
std::set<int> active_seqs = {};
|
|
|
|
// print current draft sequences
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
if (!drafts[s].active) {
|
|
continue;
|
|
}
|
|
|
|
active_seqs.insert(s);
|
|
const auto & tokens = drafts[s].tokens;
|
|
|
|
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
|
|
}
|
|
|
|
int i_dft = 0;
|
|
int s_keep = 0;
|
|
|
|
llama_token token_id;
|
|
std::string token_str;
|
|
|
|
// loop until we fail to accept a drafted token or we run out of drafted tokens
|
|
while (true) {
|
|
|
|
// check if the target token matches any of the drafts
|
|
// for stochastic sampling, attempt to match the token with the drafted tokens
|
|
{
|
|
bool accept = false;
|
|
if (params.sparams.temp > 0) {
|
|
// stochastic verification
|
|
|
|
llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
|
|
llama_sample_softmax(ctx_tgt, &dist_tgt);
|
|
float p_tgt = 0, p_dft = 0;
|
|
|
|
// GGML_ASSERT(dist_tgt.size() == dist_dft.size());
|
|
|
|
while (active_seqs.size() > 0) {
|
|
// randomly select a sequence to verify from active sequences
|
|
std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
|
|
int s = *std::next(active_seqs.begin(), u_int_dist(rng));
|
|
if (i_dft >= (int) drafts[s].tokens.size()) {
|
|
drafts[s].active = false;
|
|
active_seqs.erase(s);
|
|
continue;
|
|
}
|
|
if (accept) {
|
|
// if we already accepted a token, we can skip the rest
|
|
if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
|
|
drafts[s].active = false;
|
|
active_seqs.erase(s);
|
|
}
|
|
continue;
|
|
}
|
|
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
|
|
float r = u_dist(rng);
|
|
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
|
|
// acquire the token probabilities assigned by the draft and target models
|
|
for (size_t i = 0; i < dist_tgt.size; i++) {
|
|
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
|
|
p_tgt = dist_tgt.data[i].p;
|
|
}
|
|
if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
|
|
p_dft = dist_dft.data[i].p;
|
|
}
|
|
if (p_tgt && p_dft) {
|
|
break;
|
|
}
|
|
}
|
|
LOG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
|
|
if (r <= p_tgt / p_dft) {
|
|
s_keep = s;
|
|
accept = true;
|
|
token_id = drafts[s].tokens[i_dft];
|
|
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
|
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
|
|
|
|
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
|
break;
|
|
} else {
|
|
LOG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
|
drafts[s].active = false;
|
|
|
|
// calculate residual probability
|
|
GGML_ASSERT(dist_tgt.sorted);
|
|
GGML_ASSERT(dist_dft.sorted);
|
|
float sum_probs = 0.0f;
|
|
|
|
// sort dist by id
|
|
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
|
|
return a.id < b.id;
|
|
});
|
|
std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
|
|
return a.id < b.id;
|
|
});
|
|
|
|
for (size_t i = 0; i < dist_tgt.size; i++) {
|
|
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
|
|
sum_probs += dist_tgt.data[i].p;
|
|
}
|
|
for (size_t i = 0; i < dist_tgt.size; i++) {
|
|
dist_tgt.data[i].p /= sum_probs;
|
|
}
|
|
|
|
// sort dist_tgt by p desc
|
|
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
|
|
return a.p > b.p;
|
|
});
|
|
}
|
|
|
|
active_seqs.erase(s);
|
|
for(int i = 0; i < n_seq_dft; i++) {
|
|
if (i == s) {
|
|
continue;
|
|
}
|
|
if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
|
|
// synchronize active status for sequences with the same drafted token
|
|
drafts[i].active = drafts[i].active && accept;
|
|
if (!drafts[i].active) {
|
|
active_seqs.erase(s);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!accept) {
|
|
// all drafted tokens were rejected
|
|
// sample from the target model
|
|
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
|
|
token_id = llama_sample_token(ctx_tgt, &dist_tgt);
|
|
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
|
|
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
|
}
|
|
|
|
} else {
|
|
// greedy verification
|
|
|
|
// sample from the target model
|
|
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
|
token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
|
|
|
|
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
|
|
|
|
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
|
|
|
|
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
|
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
if (!drafts[s].active) {
|
|
continue;
|
|
}
|
|
|
|
if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
|
|
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
|
|
|
|
s_keep = s;
|
|
accept = true;
|
|
} else {
|
|
drafts[s].active = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (token_id == llama_token_eos(model_tgt)) {
|
|
has_eos = true;
|
|
}
|
|
++n_predict;
|
|
|
|
if (accept) {
|
|
++n_accept;
|
|
++n_past_tgt;
|
|
++n_past_dft;
|
|
++i_dft;
|
|
if (params.use_color) {
|
|
// Color token according to its origin sequence
|
|
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
|
|
} else {
|
|
printf("%s", token_str.c_str());
|
|
}
|
|
fflush(stdout);
|
|
continue;
|
|
} else {
|
|
printf("%s", token_str.c_str());
|
|
fflush(stdout);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
|
|
|
|
// TODO: simplify
|
|
{
|
|
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
|
|
|
llama_kv_cache_seq_keep(ctx_dft, s_keep);
|
|
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
|
llama_kv_cache_seq_keep(ctx_dft, 0);
|
|
|
|
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
|
llama_kv_cache_seq_keep(ctx_tgt, s_keep);
|
|
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
|
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
|
}
|
|
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
drafts[s].active = false;
|
|
drafts[s].tokens.clear();
|
|
drafts[s].i_batch_tgt.clear();
|
|
drafts[s].dists.clear();
|
|
}
|
|
// note: will be erased after the speculation phase
|
|
drafts[0].tokens.push_back(token_id);
|
|
drafts[0].dists.push_back(std::vector<llama_token_data>());
|
|
drafts[0].i_batch_tgt.push_back(0);
|
|
|
|
llama_batch_clear(batch_dft);
|
|
llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
|
|
|
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
|
// LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
|
llama_decode(ctx_dft, batch_dft);
|
|
|
|
++n_past_dft;
|
|
}
|
|
|
|
if (n_predict > params.n_predict || has_eos) {
|
|
break;
|
|
}
|
|
|
|
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
|
|
|
|
int n_seq_cur = 1;
|
|
int n_past_cur = n_past_dft;
|
|
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
drafts[s].active = false;
|
|
drafts[s].drafting = false;
|
|
}
|
|
drafts[0].active = true;
|
|
drafts[0].drafting = true;
|
|
drafts[0].i_batch_dft = 0;
|
|
|
|
llama_batch_clear(batch_tgt);
|
|
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
|
|
|
// sample n_draft tokens from the draft model using tree-based sampling
|
|
for (int i = 0; i < n_draft; ++i) {
|
|
batch_dft.n_tokens = 0;
|
|
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
drafts[s].skip = false;
|
|
}
|
|
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
if (!drafts[s].drafting || drafts[s].skip) {
|
|
continue;
|
|
}
|
|
|
|
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
|
|
|
|
const auto & cur_p = drafts[s].ctx_sampling->cur;
|
|
|
|
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
|
|
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
|
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
|
|
}
|
|
|
|
std::vector<int> sa(1, s);
|
|
|
|
// attempt to split the branch if the probability is high enough
|
|
for (int f = 1; f < 8; ++f) {
|
|
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
|
|
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
|
|
|
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
|
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
|
|
|
// all previous tokens from this branch are now also part of the new branch
|
|
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
|
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
|
|
if (batch_tgt.seq_id[t][p] == s) {
|
|
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
|
|
batch_tgt.n_seq_id[t]++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy the draft state
|
|
drafts[n_seq_cur].active = true;
|
|
drafts[n_seq_cur].drafting = true;
|
|
drafts[n_seq_cur].skip = true;
|
|
|
|
drafts[n_seq_cur].tokens = drafts[s].tokens;
|
|
drafts[n_seq_cur].dists = drafts[s].dists;
|
|
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
|
|
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
|
|
|
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
|
|
|
|
sa.push_back(n_seq_cur);
|
|
|
|
n_seq_cur++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// add drafted token for each sequence
|
|
for (int is = 0; is < (int) sa.size(); ++is) {
|
|
const llama_token id = cur_p[is].id;
|
|
|
|
const int s = sa[is];
|
|
|
|
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
|
|
|
|
drafts[s].tokens.push_back(id);
|
|
// save cur_p.data into drafts[s].dists
|
|
drafts[s].dists.push_back(cur_p);
|
|
|
|
// add unique drafted tokens to the target batch
|
|
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
|
|
|
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
|
|
|
// add the token to the batch for batched decoding with the draft model
|
|
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
|
|
|
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
|
|
|
if (batch_tgt.n_tokens > n_draft) {
|
|
drafts[s].drafting = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// no sequence is drafting anymore
|
|
if (batch_dft.n_tokens == 0) {
|
|
break;
|
|
}
|
|
|
|
// evaluate the drafted tokens on the draft model
|
|
llama_decode(ctx_dft, batch_dft);
|
|
++n_past_cur;
|
|
++n_drafted;
|
|
|
|
if (batch_tgt.n_tokens > n_draft) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// evaluate the target model on the drafted tokens
|
|
{
|
|
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
|
for (int s = 1; s < n_seq_dft; ++s) {
|
|
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
|
|
}
|
|
|
|
// LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
|
llama_decode(ctx_tgt, batch_tgt);
|
|
++n_past_tgt;
|
|
}
|
|
|
|
// the first token is always proposed by the target model before the speculation loop so we erase it here
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
if (!drafts[s].active) {
|
|
continue;
|
|
}
|
|
|
|
drafts[s].tokens.erase(drafts[s].tokens.begin());
|
|
drafts[s].dists.erase(drafts[s].dists.begin());
|
|
}
|
|
}
|
|
|
|
auto t_dec_end = ggml_time_us();
|
|
|
|
LOG_TEE("\n\n");
|
|
|
|
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
|
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("n_draft = %d\n", n_draft);
|
|
LOG_TEE("n_predict = %d\n", n_predict);
|
|
LOG_TEE("n_drafted = %d\n", n_drafted);
|
|
LOG_TEE("n_accept = %d\n", n_accept);
|
|
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
|
|
|
LOG_TEE("\ndraft:\n");
|
|
llama_print_timings(ctx_dft);
|
|
|
|
LOG_TEE("\ntarget:\n");
|
|
llama_print_timings(ctx_tgt);
|
|
|
|
llama_sampling_free(ctx_sampling);
|
|
for (int s = 0; s < n_seq_dft; ++s) {
|
|
llama_sampling_free(drafts[s].ctx_sampling);
|
|
}
|
|
|
|
llama_batch_free(batch_dft);
|
|
|
|
llama_free(ctx_tgt);
|
|
llama_free_model(model_tgt);
|
|
|
|
llama_free(ctx_dft);
|
|
llama_free_model(model_dft);
|
|
|
|
llama_backend_free();
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
return 0;
|
|
}
|