mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
5ecff35151
On my Mac, the direct Q4_1 product is marginally slower (~69 vs ~55 us for Q4_0). The SIMD-ified ggml version is now almost 2X slower (~121 us). On a Ryzen 7950X CPU, the direct product for Q4_1 quantization is faster than the AVX2 implementation (~60 vs ~62 us). --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
5 lines
186 B
CMake
5 lines
186 B
CMake
set(TARGET vdot)
|
|
add_executable(${TARGET} vdot.cpp)
|
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|