llama.cpp/examples/llava/glmedge-surgery.py
2024-11-26 12:36:48 +00:00

34 lines
1.3 KiB
Python

import argparse
import os
import torch
from transformers import AutoModel, AutoTokenizer
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", help="Path to GLM model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
checkpoint = model.state_dict()
# get a list of mm tensor names
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.adapter.")]
# store these tensors in a new dictionary and torch.save them
projector = {name: checkpoint[name].float() for name in mm_tensors}
torch.save(projector, f"{args.model}/glm.projector")
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.vit.model.vision_model.")]
if len(clip_tensors) > 0:
clip = {name.replace("vision.vit.model.", ""): checkpoint[name].float() for name in clip_tensors}
torch.save(clip, f"{args.model}/glm.clip")
# added tokens should be removed to be able to convert Mistral models
if os.path.exists(f"{args.model}/added_tokens.json"):
with open(f"{args.model}/added_tokens.json", "w") as f:
f.write("{}\n")
print("Done!")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}glm.projector to prepare a glm-encoder.gguf file.")