llama.cpp/common/tool-call.cpp

693 lines
30 KiB
C++

#include "tool-call.h"
#include "json-schema-to-grammar.h"
#include <algorithm>
#include <fstream>
#include <map>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using json = nlohmann::ordered_json;
static json normalize_tools(const json & tools) {
static const auto python_tool = json::parse(R"({
"type": "function",
"function": {
"name": "python",
"description": "Runs code in an Python interpreter and returns the result of the execution after 60 seconds.",
"parameters": {
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "The code to run in the Python interpreter."
}
},
"required": ["code"]
}
}
})");
auto results = json::array();
for (const auto & tool : tools) {
if (!tool.contains("type")) {
continue;
}
if (tool["type"] == "code_interpreter") {
results.push_back(python_tool);
} else if (tool["type"] == "function") {
results.push_back(tool);
} else {
continue;
}
}
return results;
}
std::string llama_tool_call_style_name(llama_tool_call_style style) {
switch (style) {
case llama_tool_call_style::None:
return "None";
case llama_tool_call_style::Generic:
return "Generic";
case llama_tool_call_style::Llama31:
return "Llama-3.1";
case llama_tool_call_style::Llama32:
return "Llama-3.2";
case llama_tool_call_style::FunctionaryV3Llama3:
return "FunctionaryV3Llama3";
case llama_tool_call_style::FunctionaryV3Llama31:
return "FunctionaryV3Llama3.1";
case llama_tool_call_style::Hermes2Pro:
return "Hermes2Pro";
case llama_tool_call_style::CommandRPlus:
return "CommandRPlus";
case llama_tool_call_style::MistralNemo:
return "MistralNemo";
default:
return "Unknown";
}
}
llama_tool_call_style llama_tool_call_style_detect(const minja::chat_template & chat_template) {
const auto & src = chat_template.source();
if (src.find("<tool_call>") != std::string::npos) {
return Hermes2Pro;
} else if (src.find(">>>all") != std::string::npos) {
return FunctionaryV3Llama3;
} else if (src.find("<|start_header_id|>") != std::string::npos
&& src.find("<function=") != std::string::npos) {
return FunctionaryV3Llama31;
} else if (src.find("<|start_header_id|>ipython<|end_header_id|>") != std::string::npos) {
if (src.find("<|python_tag|>") != std::string::npos) {
return Llama31;
} else {
return Llama32;
}
} else if (src.find("<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>") != std::string::npos) {
return CommandRPlus;
} else if (src.find("[TOOL_CALLS]") != std::string::npos) {
return MistralNemo;
} else {
return Generic;
}
}
static bool parse_json(std::string::const_iterator & it, const std::string::const_iterator & end, json & out) {
// // https://json.nlohmann.me/features/parsing/sax_interface/
struct json_error_locator : public nlohmann::json_sax<json> {
std::size_t position;
bool found_error;
json_error_locator() : position(0), found_error(false) {}
bool parse_error(std::size_t position, const std::string &, const json::exception &) override {
this->position = position - 1;
this->found_error = true;
return false;
}
bool null() override { return true; }
bool boolean(bool) override { return true; }
bool number_integer(number_integer_t) override { return true; }
bool number_unsigned(number_unsigned_t) override { return true; }
bool number_float(number_float_t, const string_t &) override { return true; }
bool string(string_t &) override { return true; }
bool binary(binary_t &) override { return true; }
bool start_object(std::size_t) override { return true; }
bool key(string_t &) override { return true; }
bool end_object() override { return true; }
bool start_array(std::size_t) override { return true; }
bool end_array() override { return true; }
};
json_error_locator err_loc;
json::sax_parse(it, end, &err_loc);
std::string::const_iterator temptative_end;
if (err_loc.found_error) {
temptative_end = it + err_loc.position;
} else {
temptative_end = end;
}
std::string json_sub {it, temptative_end};
try {
out = json::parse(json_sub);
it = temptative_end;
return true;
} catch (const std::exception &) {
return false;
}
}
/**
* Takes a prefix regex that must have 1 group to capture the function name, a closing suffix, and expects json parameters in between.
* Aggregates the prefix, suffix and in-between text into the content.
*/
static llama_tool_calls parse_json_tool_calls(const json & tools, const std::string& input, const std::regex & function_regex, const std::regex & close_regex, bool check_names) {
std::smatch match;
llama_tool_calls result;
auto end = input.end();
auto it = input.begin();
std::unordered_set<std::string> tool_names;
if (check_names) {
for (const auto & tool : tools) {
if (!tool.contains("type")) {
continue;
}
std::string type = tool.at("type");
if (type == "function") {
tool_names.insert(tool["function"]["name"]);
} else if (type == "code_interpreter") {
tool_names.insert("python");
}
}
}
while (it != end) {
std::sregex_iterator rend;
std::sregex_iterator rit(it, end, function_regex);
if (rit == rend) {
result.content += std::string(it, end);
break;
}
auto name = rit->str(1);
if (check_names && tool_names.find(name) == tool_names.end()) {
result.content += std::string(it, rit->suffix().first);
break;
}
result.content += std::string(it, rit->prefix().second);
it = rit->suffix().first;
json arguments;
if (!parse_json(it, end, arguments)) {
throw std::runtime_error("Failed to parse json tool call arguments");
}
if (!std::regex_search(it, end, match, close_regex)) {
throw std::runtime_error("Malformed input, missing closing pattern");
}
it = match.suffix().first;
result.tool_calls.push_back({name, arguments.dump(), /* id= */ ""});
}
return result;
}
static llama_tool_calls parse_hermes_tool_calls(const std::string& input) {
try {
std::regex start_pattern(R"([\n\s]*<tool_call>)");
std::regex middle_pattern(R"([\n\s]*</tool_call>[\n\s]*<tool_call>)");
std::regex end_pattern(R"([\n\s]*</tool_call>[\n\s]*$)");
auto end = input.end();
std::sregex_iterator rend;
std::sregex_iterator rit(input.begin(), end, start_pattern);
if (rit == rend) {
return {input, {}};
}
llama_tool_calls result;
result.content = rit->prefix();
auto it = rit->suffix().first;
while (it != end) {
json call;
if (!parse_json(it, end, call)) {
throw std::runtime_error("Failed to parse json tool call");
}
result.tool_calls.push_back({
call["name"],
call["arguments"].dump(),
/* id= */ "",
});
rit = {it, end, middle_pattern};
if (rit != rend) {
it = rit->suffix().first;
} else {
rit = {it, end, end_pattern};
if (rit == rend) {
throw std::runtime_error("Malformed input, missing </tool_call>");
}
break;
}
}
return result;
} catch (const std::exception & e) {
return {input, {}};
}
}
static llama_tool_calls parse_llama_3_tool_calls(const json & tools, const std::string& input, bool allow_python_tag) {
if (allow_python_tag) {
static std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
std::smatch match;
if (std::regex_search(input, match, python_tag_regex)) {
return {
/* .content = */ match.prefix().str(),
/* .tool_calls = */ {
{
/* .name = */ "python",
/* .arguments = */ (json {{"code", match[1].str()}}).dump(),
/* .id = */ "",
},
}
};
}
}
static std::regex function_regex("\\{(?:\"type\": \"function\", |[\\s\\n\\r]*)\"name\": \"([^\"]+)\", \"parameters\": ");
static std::regex close_regex("\\}");
return parse_json_tool_calls(tools, input, function_regex, close_regex, /* check_names= */ true);
}
static llama_tool_calls parse_functionary_v3_llama_3_1_tool_calls(const json & tools, const std::string& input) {
// This version of Functionary still supports the llama 3.1 tool call format for the python tool.
static std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
std::smatch match;
if (std::regex_search(input, match, python_tag_regex)) {
return {
/* .content = */ match.prefix().str(),
/* .tool_calls = */ {
{
/* .name = */ "python",
/* .arguments = */ (json {{"code", match[1].str()}}).dump(),
/* .id = */ "",
},
}
};
}
static std::regex function_regex(R"(<function=(\w+)>)");
static std::regex close_regex(R"(</function>)");
return parse_json_tool_calls(tools, input, function_regex, close_regex, /* check_names= */ false);
}
static llama_tool_calls parse_functionary_v3_tool_calls(const json & tools, const std::string& input) {
static std::regex function_regex(R"((?:>>>)?(\w+)\n)");
static std::regex close_regex(R"($|(?=>>>))");
return parse_json_tool_calls(tools, input, function_regex, close_regex, /* check_names= */ true);
}
static llama_tool_calls parse_generic_tool_calls(const std::string& input) {
json data = json::parse(input);
llama_tool_calls result;
if (data.contains("tool_calls")) {
for (const auto & tool_call : data["tool_calls"]) {
result.tool_calls.push_back({
tool_call["name"],
tool_call["arguments"].dump(),
tool_call.contains("id") ? tool_call["id"] : "",
});
}
} else if (data.contains("tool_call")) {
result.tool_calls.push_back({
data["tool_call"]["name"],
data["tool_call"]["arguments"].dump(),
/* id= */ "",
});
} else if (data.contains("response")) {
const auto & response = data["response"];
result.content = response.is_string() ? response.get<std::string>() : response.dump(2);
}
return result;
}
static llama_tool_calls parse_mistral_nemo_tool_calls(const std::string& input) {
auto content_end = input.find("[TOOL_CALLS]");
size_t tc_start = std::string::npos;
llama_tool_calls result;
const auto process_tool_calls = [&](const json & tool_calls) {
for (const auto & tool_call : tool_calls) {
const auto & arguments = tool_call["arguments"];
result.tool_calls.push_back({
tool_call["name"],
arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
tool_call.contains("id") ? tool_call["id"] : "",
});
}
};
if (content_end != std::string::npos) {
tc_start = content_end + 12;
result.content = input.substr(0, content_end);
auto tool_calls = json::parse(input.substr(tc_start));
process_tool_calls(tool_calls);
} else {
// Somehow not getting [TOOL_CALLS] in the output. Oh well, just do without it.
try {
auto tool_calls = json::parse(input);
process_tool_calls(tool_calls);
} catch (const json::exception & e) {
throw std::runtime_error("Failed to parse tool calls: " + std::string(e.what()) + ":\n" + input);
}
}
return result;
}
llama_tool_calls parse_tool_calls(llama_tool_call_style style, const json & tools, const std::string& input) {
// fprintf(stderr, "# parse_tool_calls(%s):\n\n%s\n\n", llama_tool_call_style_name(style).c_str(), input.c_str());
switch (style) {
case llama_tool_call_style::None:
return {input, {}};
case llama_tool_call_style::Generic:
return parse_generic_tool_calls(input);
case llama_tool_call_style::Llama31:
return parse_llama_3_tool_calls(tools, input, /* parse_llama_3_tool_calls= */ true);
case llama_tool_call_style::Llama32:
return parse_llama_3_tool_calls(tools, input, /* parse_llama_3_tool_calls= */ false);
case llama_tool_call_style::FunctionaryV3Llama3:
return parse_functionary_v3_tool_calls(tools, input);
case llama_tool_call_style::FunctionaryV3Llama31:
return parse_functionary_v3_llama_3_1_tool_calls(tools, input);
case llama_tool_call_style::Hermes2Pro:
return parse_hermes_tool_calls(input);
case llama_tool_call_style::MistralNemo:
return parse_mistral_nemo_tool_calls(input);
default:
throw std::runtime_error("Unsupported tool call style");
}
}
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
json messages_with_system = messages;
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
messages_with_system.at(0).at("content") += ("\n" + system_prompt);
} else {
messages_with_system.insert(messages_with_system.begin(), json {
{"role", "system"},
{"content", system_prompt},
});
}
return messages_with_system;
}
llama_tool_call_handler llama_tool_call_handler_init(
llama_tool_call_style style,
const minja::chat_template & tmpl,
bool allow_content,
const nlohmann::ordered_json & parallel_tool_calls,
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
const nlohmann::ordered_json & json_schema)
{
llama_tool_call_handler handler;
auto parallel = parallel_tool_calls.is_null() ? tmpl.supports_parallel_tool_calls() : parallel_tool_calls.get<bool>();
switch (style) {
case llama_tool_call_style::None:
handler.prompt = tmpl.apply(messages, tools, /* add_generation_prompt= */ true);
break;
case llama_tool_call_style::Generic: {
auto actual_tools = normalize_tools(tools);
auto tool_call_schemas = json::array();
for (const auto & tool : actual_tools) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto tool_schema = json {
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", name},
}},
{"arguments", parameters},
}},
{"required", json::array({"name", "arguments"})},
};
if (function.contains("description")) {
tool_schema["description"] = function["description"];
}
if (parallel) {
tool_schema["properties"]["id"] = {
{"type", "string"},
{"minLength", 4},
};
tool_schema["required"].push_back("id");
}
tool_call_schemas.emplace_back(tool_schema);
}
const auto tool_call =
parallel
? json {
{"type", "object"},
{"properties", {
{"tool_calls", {
{"type", "array"},
{"items", json {{"anyOf", tool_call_schemas}}}
}},
}},
{"required", json::array({"tool_calls"})},
}
: json {
{"type", "object"},
{"properties", {
{"tool_call", json {{"anyOf", tool_call_schemas}}},
}},
{"required", json::array({"tool_call"})},
};
const auto schema =
allow_content
? json {
{"anyOf", json::array({
tool_call,
{
{"type", "object"},
{"properties", {
{"response", json_schema.is_null()
? json {{"type", "string"}}
: json_schema
},
}},
},
})}
}
: tool_call;
handler.grammar = build_grammar([&](const llama_grammar_builder & builder) {
builder.add_schema("root", schema);
});
// TODO: add schema to system prompt.
auto tweaked_messages = add_system(
messages,
"Respond in JSON format, either with a request to call tools or with a response to the user's request. Here is the schema for all responses:\n\n```json\n" + schema.dump(2) + "\n```");
handler.prompt = tmpl.apply(tweaked_messages, actual_tools.empty() ? json() : actual_tools, /* add_generation_prompt= */ true);
break;
}
case llama_tool_call_style::MistralNemo: {
auto actual_tools = normalize_tools(tools);
handler.grammar = build_grammar([&](const llama_grammar_builder & builder) {
auto schemas = json::array();
for (const auto & tool : actual_tools) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto schema = json {
{"type", "object"},
{"properties", {
// Important note: the model is probably trained to take a JSON stringified arguments value.
// It's hard to constrain that for now (while reusing the JSON schema conversion), so we're just expecting a plain object.
{"arguments", parameters},
{"name", {
{"type", "string"},
{"const", name},
}},
{"id", {
{"type", "string"},
// Nemo's template expects a 9-character alphanumeric ID.
{"pattern", "^[a-zA-Z0-9]{9}$"},
}},
}},
{"required", json::array({"name", "arguments", "id"})},
};
schemas.push_back(schema);
}
auto schema = json {
{"type", "array"},
{"items", json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!parallel) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"[TOOL_CALLS]\"? " + builder.add_schema("tool_calls", schema));
});
if (allow_content) {
handler.grammar_trigger_words.push_back("[TOOL_CALLS]");
handler.grammar_trigger_words.push_back("[{\"arguments\":");
}
// auto tweaked_messages = add_system(messages, "You are a helpful AI with tool calling capabilities. Prefix any tool calls with [TOOL_CALLS]");
handler.prompt = tmpl.apply(messages, actual_tools.empty() ? json() : actual_tools, /* add_generation_prompt= */ true);
break;
}
case llama_tool_call_style::Llama31:
case llama_tool_call_style::Llama32: {
auto builtin_tools = json {"wolfram_alpha", "brave_search"};
for (const auto & tool : tools) {
if (!tool.contains("type")) {
continue;
}
if (tool["type"] == "code_interpreter") {
builtin_tools.push_back("code_interpreter");
break;
}
}
auto actual_tools = normalize_tools(tools);
auto uses_python_tag = style == llama_tool_call_style::Llama31;
// Technically we should only trigger on `"\n{\"name\": \"" + name + "\""` for each tool name,
// but Llama-3.2-3B (and 1B) struggles to output valid tool calls so we're "guiding" it strongly as soon
// as it seems to be outputting some JSON.
// TODO: make this conditional on a very small model (e.g. 1B / 3B).
auto eagerly_match_any_json = style == llama_tool_call_style::Llama32;
handler.grammar = build_grammar([&](const llama_grammar_builder & builder) {
std::vector<std::string> tool_rules;
for (const auto & tool : actual_tools) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
builder.resolve_refs(parameters);
if (uses_python_tag && (name == "ipython" || builtin_tools.contains(name))) {
tool_rules.push_back(builder.add_rule("ipython-call", "\"<|python_tag|>\" .*"));
if (allow_content) {
handler.grammar_trigger_words.push_back("<|python_tag|>");
}
} else {
//"<|start_header_id|>assistant<|end_header_id|>\n\n{\"name\": \"" + name + "\", " +
tool_rules.push_back(
builder.add_rule(
name + "-call",
"\"\\n\"? \"{\" ( \"\\\"type\\\": \\\"function\\\", \" | space ) \"\\\"name\\\": \\\"" + name + "\\\", \\\"parameters\\\": \" " +
builder.add_schema(name + "-args", parameters) +
" \"}\""));
if (allow_content && !eagerly_match_any_json) {
handler.grammar_trigger_words.push_back("{\"name\": \"" + name + "\"");
// Accommodate most common tool call variations from Llama-3.1-8B and Llama-3.2-3B.
// Note that c++11's regex doesn't support partial matches, otherwise it would make
// sense to add support for trigger regexes to the antiprompt mechanism.
handler.grammar_trigger_words.push_back("{\n\t\"name\": \"" + name + "\"");
handler.grammar_trigger_words.push_back("{\n \"name\": \"" + name + "\"");
handler.grammar_trigger_words.push_back("{\n \"name\": \"" + name + "\"");
handler.grammar_trigger_words.push_back("{\"type\": \"function\", \"name\": \"" + name + "\"");
}
}
}
if (allow_content && eagerly_match_any_json) {
handler.grammar_trigger_words.push_back("{\"");
handler.grammar_trigger_words.push_back("{\n\t\"");
handler.grammar_trigger_words.push_back("{\n \"");
handler.grammar_trigger_words.push_back("{\n \"");
}
builder.add_rule("root", join(tool_rules.begin(), tool_rules.end(), " | "));
});
handler.additional_stop_words.push_back("<|eom_id|>");
handler.prompt = tmpl.apply(messages, actual_tools.empty() ? json() : actual_tools, /* add_generation_prompt= */ true, {
{"builtin_tools", builtin_tools},
});
break;
}
case llama_tool_call_style::FunctionaryV3Llama3: {
// >>>all\nlet's call functions>>>fn1\n{"arg1": 1...}\n>>>fn2\n{"arg1": 1...}...
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
auto actual_tools = normalize_tools(tools);
handler.grammar = build_grammar([&](const llama_grammar_builder & builder) {
std::vector<std::string> first_tool_rules;
std::vector<std::string> subsequent_tool_rules;
for (const auto & tool : actual_tools) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
auto args_rule = builder.add_schema(name + "-args", parameters);
first_tool_rules.push_back(builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule));
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\"\\n>>>" + name + "\\n\" " + args_rule));
if (allow_content) {
handler.grammar_trigger_words.push_back(name + "\n");
handler.grammar_trigger_words.push_back("\n>>>" + name + "\n");
}
}
auto first_rule = builder.add_rule("first_tool_call", join(first_tool_rules.begin(), first_tool_rules.end(), " | ")) + " space";
if (parallel) {
auto subsequent_rule = builder.add_rule("subsequent_tool_call", join(subsequent_tool_rules.begin(), subsequent_tool_rules.end(), " | ")) + " space";
builder.add_rule("root", first_rule + " (" + subsequent_rule + ")*");
} else {
builder.add_rule("root", first_rule);
}
});
handler.prompt = tmpl.apply(messages, actual_tools.empty() ? json() : actual_tools, /* add_generation_prompt= */ true);
// handler.parser = parse_functionary_3_2_tool_calls;
break;
}
case llama_tool_call_style::FunctionaryV3Llama31: {
// ./tests/chat/templates/meetkai-functionary-medium-v3.1.jinja
// https://github.com/MeetKai/functionary/blob/main/tests/prompt_test_v3-llama3.1.txt
// TODO: handle tool {type: code_interpreter} as python
auto actual_tools = normalize_tools(tools);
handler.grammar = build_grammar([&](const llama_grammar_builder & builder) {
std::vector<std::string> tool_rules;
for (const auto & tool : actual_tools) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
if (name == "python" || name == "ipython") {
tool_rules.push_back(builder.add_rule("python-call", "\"<|python_tag|>\" .*"));
if (allow_content) {
handler.grammar_trigger_words.push_back("<|python_tag|>");
}
} else {
tool_rules.push_back(builder.add_rule(name + "-call", "\"<function=" + name + ">\" " + builder.add_schema(name + "-args", parameters) + " \"</function>\" space"));
}
}
auto tool_call = builder.add_rule("tool_call", join(tool_rules.begin(), tool_rules.end(), " | ")) + " space";
builder.add_rule("root", parallel ? "(" + tool_call + ")+" : tool_call);
if (allow_content) {
handler.grammar_trigger_words.push_back("<function=");
}
});
handler.prompt = tmpl.apply(messages, actual_tools.empty() ? json() : actual_tools, /* add_generation_prompt= */ true);
// handler.parser = parse_functionary_3_2_tool_calls;
break;
}
case llama_tool_call_style::Hermes2Pro: {
// NousResearchHermesPro_2
// (content)?(<tool_call>{"name": "foo", "arguments": {"a": 1}}</tool_call>)*
auto actual_tools = normalize_tools(tools);
handler.grammar = build_grammar([&](const llama_grammar_builder & builder) {
std::vector<std::string> tool_rules;
for (const auto & tool : actual_tools) {
const auto & function = tool["function"];
std::string name = function["name"];
auto parameters = function["parameters"];
builder.resolve_refs(parameters);
tool_rules.push_back(builder.add_schema(name + "-call", {
{"type", "object"},
{"properties", json {
{"name", json {{"const", name}}},
{"arguments", parameters},
}},
{"required", json::array({"name", "arguments"})},
}));
}
auto tool_call = "\"<tool_call>\" space " + builder.add_rule("tool_call", join(tool_rules.begin(), tool_rules.end(), " | ")) + " \"</tool_call>\" space";
builder.add_rule("root", parallel ? "(" + tool_call + ")+" : tool_call);
if (allow_content) {
handler.grammar_trigger_words.push_back("<tool_call>");
}
});
handler.prompt = tmpl.apply(messages, actual_tools.empty() ? json() : actual_tools, /* add_generation_prompt= */ true);
break;
}
default:
throw std::runtime_error("Unsupported tool call style");
}
return handler;
}