mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-14 14:59:52 +00:00
4760e7cc0b
* sync : ggml (backend v2) (wip) * sync : migrate examples and llama.cpp to dynamic graphs (wip) * sync : update tests + fix max op params to 64 ggml-ci * sync : ggml-cuda ggml-ci * llama : fix save/load state context size ggml-ci * sync : try to fix build on tvOS * sync : pass custom graph sizes in training examples * sync : update graph copies to new ggml API * sync : update sync-ggml.sh with new files * scripts : fix header in sync script * train : fix context size calculations * llama : increase inference graph size up to 4096 nodes * train : allocate grads for backward graphs * train : allocate grads for gb_tmp
182 lines
5.0 KiB
C++
182 lines
5.0 KiB
C++
#include "ggml.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cassert>
|
|
|
|
#define MAX_NARGS 2
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic ignored "-Wdouble-promotion"
|
|
#endif
|
|
|
|
//
|
|
// logging
|
|
//
|
|
#define GGML_DEBUG 0
|
|
#if (GGML_DEBUG >= 1)
|
|
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG(...)
|
|
#endif
|
|
|
|
#if (GGML_DEBUG >= 5)
|
|
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG_5(...)
|
|
#endif
|
|
|
|
#if (GGML_DEBUG >= 10)
|
|
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG_10(...)
|
|
#endif
|
|
|
|
#define GGML_PRINT(...) printf(__VA_ARGS__)
|
|
|
|
|
|
static float frand(void) {
|
|
return (float)rand()/(float)RAND_MAX;
|
|
}
|
|
|
|
static struct ggml_tensor * get_random_tensor(
|
|
struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax
|
|
) {
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
|
|
|
|
switch (ndims) {
|
|
case 1:
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
}
|
|
break;
|
|
case 3:
|
|
for (int i2 = 0; i2 < ne[2]; i2++) {
|
|
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 4:
|
|
for (int i3 = 0; i3 < ne[3]; i3++) {
|
|
for (int i2 = 0; i2 < ne[2]; i2++) {
|
|
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int main(void) {
|
|
struct ggml_init_params params = {
|
|
/* .mem_size = */ 1024*1024*1024,
|
|
/* .mem_buffer = */ NULL,
|
|
/* .no_alloc = */ false,
|
|
};
|
|
|
|
struct ggml_context * ctx = ggml_init(params);
|
|
|
|
int64_t ne1[4] = {4, 128, 1, 1};
|
|
int64_t ne2[4] = {4, 256, 1, 1};
|
|
int64_t ne3[4] = {128, 256, 1, 1};
|
|
|
|
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
|
|
struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
|
|
ggml_set_param(ctx, a);
|
|
ggml_set_param(ctx, b);
|
|
|
|
struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
|
|
|
|
struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
|
|
struct ggml_tensor * d = ggml_sub(ctx, c, ab);
|
|
struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
|
|
|
|
struct ggml_cgraph * ge = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
|
|
ggml_build_forward_expand(ge, e);
|
|
ggml_graph_reset(ge);
|
|
|
|
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
|
|
|
|
const float fe = ggml_get_f32_1d(e, 0);
|
|
printf("%s: e = %.4f\n", __func__, fe);
|
|
|
|
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
|
|
|
|
ggml_opt(ctx, opt_params, e);
|
|
|
|
ggml_graph_reset(ge);
|
|
|
|
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
|
|
|
|
const float fe_opt = ggml_get_f32_1d(e, 0);
|
|
printf("%s: original e = %.4f\n", __func__, fe);
|
|
printf("%s: optimized e = %.4f\n", __func__, fe_opt);
|
|
|
|
const bool success = (fe_opt <= fe);
|
|
assert(success);
|
|
|
|
ggml_free(ctx);
|
|
return success ? 0 : -1;
|
|
}
|
|
// int64_t ne1[4] = {4, 128, 1, 1};
|
|
// int64_t ne2[4] = {4, 256, 1, 1};;
|
|
// int64_t ne3[4] = {128, 256, 1, 1};
|
|
// main: original e = 25890.9375
|
|
// main: optimized e = 10094.7031
|
|
|
|
// int64_t ne1[4] = {8, 128, 1, 1};
|
|
// int64_t ne2[4] = {8, 256, 1, 1};;
|
|
// int64_t ne3[4] = {128, 256, 1, 1};
|
|
// main: original e = 39429.5078
|
|
// main: optimized e = 9275.8936
|
|
|
|
// int64_t ne1[4] = {16, 128, 1, 1};
|
|
// int64_t ne2[4] = {16, 256, 1, 1};;
|
|
// int64_t ne3[4] = {128, 256, 1, 1};
|
|
// main: original e = 68371.1328
|
|
// main: optimized e = 7854.4502
|
|
|
|
|
|
// int64_t ne1[4] = {32, 128, 1, 1};
|
|
// int64_t ne2[4] = {32, 256, 1, 1};;
|
|
// int64_t ne3[4] = {128, 256, 1, 1};
|
|
// main: original e = 126061.1953
|
|
// main: optimized e = 5451.0166
|
|
|
|
// int64_t ne1[4] = {4, 1024, 1, 1};
|
|
// int64_t ne2[4] = {4, 2048, 1, 1};;
|
|
// int64_t ne3[4] = {1024, 2048, 1, 1};
|
|
// main: original e = 1620817.8750
|
|
// main: optimized e = 698387.6875
|
|
|
|
// another run on M1
|
|
// int64_t ne1[4] = {4, 1024, 1, 1};
|
|
// int64_t ne2[4] = {4, 2048, 1, 1};;
|
|
// int64_t ne3[4] = {1024, 2048, 1, 1};
|
|
// main: original e = 1629595.6250
|
|
// main: optimized e = 698169.1250
|
|
|
|
// int64_t ne1[4] = {32, 1024, 1, 1};
|
|
// int64_t ne2[4] = {32, 2048, 1, 1};;
|
|
// int64_t ne3[4] = {1024, 2048, 1, 1};
|
|
// main: original e = 8146770.5000
|
|
// main: optimized e = 651119.1250
|