mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
b83cc3f5b3
* feat: first things to do * feat: create tensors for Jina architecture * fix: use other tensors * feat: embedding gets results * fix: fix usage of ALIBI * fix: clean prints * fix: do some cleanup unused vars * fix: revert changes to Makefile and CMakeLists * fix: revert some changes * fix: fix small detail * fix: fix convert formatting * fix: fix linting and editor * feat: set proper vocab settings * fix: JinaBertForMaskedLM registration * feat: support q_normalization and k_normalization in Jina arch * feat: handle gpt2 tokenizer with Jina architecture * feat: example comments in embedding * feat: rename Jina Bert to Jina Bert V2 * fix: add some changes as per review * feat: proper KQ_pos for Jina embeddings * feat: add capacity to load models ES and DE for Spanish * llama : fix pre-tokenizers * ggml : full ALiBi support * ggml : update ggml_soft_max_ext() CUDA, SYCL * ggml : ggml_flash_attn_ext() support ALiBi (CPU) * ggml : ggml_flash_attn_ext() support ALiBi (Metal) * ggml : fix warning * ggml : ggml_flash_attn_ext() support ALiBi (CUDA) ggml-ci * minor : clean-up * embedding : add warning about missing SEP --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
embedding.cpp | ||
README.md |
llama.cpp/example/embedding
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
Unix-based systems (Linux, macOS, etc.):
./embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null
Windows:
embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null
The above command will output space-separated float values.