mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-13 14:29:52 +00:00
6381d4e110
* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf : inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp : fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40
.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
335 lines
15 KiB
Python
335 lines
15 KiB
Python
import sys, struct, math, argparse
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
|
|
import gguf
|
|
|
|
# Note: Does not support GGML_QKK_64
|
|
QK_K = 256
|
|
# Items here are (block size, type size)
|
|
GGML_QUANT_SIZES = {
|
|
gguf.GGMLQuantizationType.F32 : (1, 4),
|
|
gguf.GGMLQuantizationType.F16 : (1, 2),
|
|
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
|
|
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
|
|
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
|
|
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
|
|
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
|
|
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
|
|
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
|
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
|
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
|
|
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
|
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
|
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
|
|
}
|
|
|
|
class Hyperparameters:
|
|
def __init__(self):
|
|
self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
|
|
self.n_ff = 0
|
|
|
|
def set_n_ff(self, model):
|
|
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
|
|
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
|
|
ff_tensor = model.tensors[ff_tensor_idx]
|
|
self.n_ff = ff_tensor.dims[1]
|
|
|
|
def load(self, data, offset):
|
|
(
|
|
self.n_vocab,
|
|
self.n_embd,
|
|
self.n_mult,
|
|
self.n_head,
|
|
self.n_layer,
|
|
self.n_rot,
|
|
self.ftype,
|
|
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
|
|
return 4 * 7
|
|
|
|
def __str__(self):
|
|
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
|
|
|
|
class Vocab:
|
|
def __init__(self):
|
|
self.items = []
|
|
|
|
def load(self, data, offset, n_vocab):
|
|
orig_offset = offset
|
|
for _ in range(n_vocab):
|
|
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
|
|
assert itemlen < 4096, 'Absurd vocab item length'
|
|
offset += 4
|
|
vocab = bytes(data[offset:offset + itemlen])
|
|
offset += itemlen
|
|
score = struct.unpack('<f', data[offset:offset + 4])[0]
|
|
offset += 4
|
|
self.items.append((vocab, score))
|
|
return offset - orig_offset
|
|
|
|
class Tensor:
|
|
def __init__(self):
|
|
self.name = None
|
|
self.dims = ()
|
|
self.dtype = None
|
|
self.start_offset = 0
|
|
self.len_bytes = 0
|
|
|
|
def load(self, data, offset):
|
|
orig_offset = offset
|
|
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
|
|
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
|
|
assert name_len < 4096, 'Absurd tensor name length'
|
|
quant = GGML_QUANT_SIZES.get(dtype)
|
|
assert quant is not None, 'Unknown tensor type'
|
|
(blksize, tysize) = quant
|
|
offset += 12
|
|
self.dtype= dtype
|
|
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
|
|
offset += 4 * n_dims
|
|
self.name = bytes(data[offset:offset + name_len])
|
|
offset += name_len
|
|
pad = ((offset + 31) & ~31) - offset
|
|
offset += pad
|
|
n_elems = np.prod(self.dims)
|
|
n_bytes = (n_elems * tysize) // blksize
|
|
self.start_offset = offset
|
|
self.len_bytes = n_bytes
|
|
offset += n_bytes
|
|
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
|
|
return offset - orig_offset
|
|
|
|
class GGMLV3Model:
|
|
def __init__(self):
|
|
self.hyperparameters = None
|
|
self.vocab = None
|
|
self.tensor_map = {}
|
|
self.tensors = []
|
|
|
|
def validate_header(self, data, offset):
|
|
if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
|
|
raise ValueError('Only GGJTv3 supported')
|
|
return 8
|
|
|
|
def load(self, data, offset):
|
|
offset += self.validate_header(data, offset)
|
|
hp = Hyperparameters()
|
|
offset += hp.load(data, offset)
|
|
vocab = Vocab()
|
|
offset += vocab.load(data, offset, hp.n_vocab)
|
|
tensors = []
|
|
tensor_map = {}
|
|
while offset < len(data):
|
|
tensor = Tensor()
|
|
offset += tensor.load(data, offset)
|
|
tensor_map[tensor.name] = len(tensors)
|
|
tensors.append(tensor)
|
|
self.hyperparameters = hp
|
|
self.vocab = vocab
|
|
self.tensors = tensors
|
|
self.tensor_map = tensor_map
|
|
hp.set_n_ff(self)
|
|
return offset
|
|
|
|
class GGMLToGGUF:
|
|
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None):
|
|
hp = ggml_model.hyperparameters
|
|
self.model = ggml_model
|
|
self.data = data
|
|
self.cfg = cfg
|
|
self.params_override = params_override
|
|
self.vocab_override = vocab_override
|
|
if params_override is not None:
|
|
n_kv_head = params_override.n_head_kv
|
|
else:
|
|
if cfg.gqa == 1:
|
|
n_kv_head = hp.n_head
|
|
else:
|
|
gqa = float(cfg.gqa)
|
|
n_kv_head = None
|
|
for x in range(1, 256):
|
|
if float(hp.n_head) / float(x) == gqa:
|
|
n_kv_head = x
|
|
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
|
|
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
|
|
self.n_kv_head = n_kv_head
|
|
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
|
|
|
|
def save(self):
|
|
print('* Preparing to save GGUF file')
|
|
gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
|
self.add_params(gguf_writer)
|
|
self.add_vocab(gguf_writer)
|
|
self.add_tensors(gguf_writer)
|
|
print(" gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print(" gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print(" gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
gguf_writer.close()
|
|
|
|
def add_params(self, gguf_writer):
|
|
hp = self.model.hyperparameters
|
|
cfg = self.cfg
|
|
desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
|
|
try:
|
|
# Filenames aren't necessarily valid UTF8.
|
|
name = cfg.name if cfg.name is not None else cfg.input.name
|
|
except UnicodeDecodeError:
|
|
name = None
|
|
print('* Adding model parameters and KV items')
|
|
if name is not None:
|
|
gguf_writer.add_name(name)
|
|
gguf_writer.add_description(desc)
|
|
if self.params_override is not None:
|
|
po = self.params_override
|
|
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
|
|
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
|
|
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
|
|
gguf_writer.add_context_length (po.n_ctx)
|
|
gguf_writer.add_embedding_length (po.n_embd)
|
|
gguf_writer.add_block_count (po.n_layer)
|
|
gguf_writer.add_feed_forward_length (po.n_ff)
|
|
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
|
|
gguf_writer.add_head_count (po.n_head)
|
|
gguf_writer.add_head_count_kv (po.n_head_kv)
|
|
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
|
|
return
|
|
gguf_writer.add_context_length(cfg.context_length)
|
|
gguf_writer.add_embedding_length(hp.n_embd)
|
|
gguf_writer.add_block_count(hp.n_layer)
|
|
gguf_writer.add_feed_forward_length(hp.n_ff)
|
|
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
|
|
gguf_writer.add_head_count(hp.n_head)
|
|
gguf_writer.add_head_count_kv(self.n_kv_head)
|
|
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
|
|
|
|
def add_vocab(self, gguf_writer):
|
|
hp = self.model.hyperparameters
|
|
gguf_writer.add_tokenizer_model('llama')
|
|
tokens = []
|
|
scores = []
|
|
toktypes = []
|
|
if self.vocab_override is not None:
|
|
vo = self.vocab_override
|
|
print('* Adding vocab item(s)')
|
|
for (idx, vitem) in enumerate(vo.all_tokens()):
|
|
if len(vitem) == 3:
|
|
tokens.append(vitem[0])
|
|
scores.append(vitem[1])
|
|
toktypes.append(vitem[2])
|
|
else:
|
|
# Maybe try to guess the token type here?
|
|
tokens.append(vitem[0])
|
|
scores.append(vitem[1])
|
|
assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
if len(toktypes) > 0:
|
|
gguf_writer.add_token_types(toktypes)
|
|
return
|
|
print(f'* Adding {hp.n_vocab} vocab item(s)')
|
|
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
|
|
tt = 1 # Normal
|
|
if len(vbytes) == 0:
|
|
tt = 3 # Control
|
|
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
|
|
hv = hex(vbytes[0])[2:].upper()
|
|
vbytes = bytes(f'<0x{hv}>', encoding = 'UTF-8')
|
|
tt = 6 # Byte
|
|
else:
|
|
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
|
|
toktypes.append(tt)
|
|
tokens.append(vbytes)
|
|
scores.append(vscore)
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
|
|
def add_tensors(self, gguf_writer):
|
|
nm = self.name_map
|
|
data = self.data
|
|
print(f'* Adding {len(self.model.tensors)} tensor(s)')
|
|
for tensor in self.model.tensors:
|
|
name = str(tensor.name, 'UTF-8')
|
|
if name.endswith('.weight'):
|
|
name = name[:-7]
|
|
suffix = '.weight'
|
|
elif name.endswith('.bias'):
|
|
name = name[:-5]
|
|
suffix = '.bias'
|
|
mapped_name = nm.get(name)
|
|
assert mapped_name is not None, f'Bad name {name}'
|
|
mapped_name += suffix
|
|
tempdims = list(tensor.dims[:])
|
|
if len(tempdims) > 1:
|
|
temp = tempdims[1]
|
|
tempdims[1] = tempdims[0]
|
|
tempdims[0] = temp
|
|
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
|
|
gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
|
|
|
|
def handle_metadata(cfg, hp):
|
|
import convert
|
|
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
|
|
hf_config_path = cfg.model_metadata_dir / "config.json"
|
|
orig_config_path = cfg.model_metadata_dir / "params.json"
|
|
# We pass a fake model here. "original" mode will check the shapes of some
|
|
# tensors if information is missing in the .json file: other than that, the
|
|
# model data isn't used so this should be safe (at least for now).
|
|
fakemodel = {
|
|
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
|
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
|
}
|
|
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
|
|
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
|
|
if hf_config_path.exists():
|
|
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
|
|
elif orig_config_path.exists():
|
|
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
|
|
else:
|
|
raise ValueError('Unable to load metadata')
|
|
vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
|
|
convert.check_vocab_size(params, vocab)
|
|
return (params, vocab)
|
|
|
|
def handle_args():
|
|
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
|
|
parser.add_argument('--input', '-i', type = Path, help = 'Input GGMLv3 filename')
|
|
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename')
|
|
parser.add_argument('--name', help = 'Set model name')
|
|
parser.add_argument('--desc', help = 'Set model description')
|
|
parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
|
|
parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
|
|
parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
|
|
parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
|
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
|
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
|
|
return parser.parse_args()
|
|
|
|
def main():
|
|
cfg = handle_args()
|
|
print(f'* Using config: {cfg}')
|
|
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
|
|
data = np.memmap(cfg.input, mode = 'r')
|
|
model = GGMLV3Model()
|
|
print('* Scanning GGML input file')
|
|
offset = model.load(data, 0)
|
|
print(f'* GGML model hyperparameters: {model.hyperparameters}')
|
|
vocab_override = None
|
|
params_override = None
|
|
if cfg.model_metadata_dir is not None:
|
|
(params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters)
|
|
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
|
|
print(f'* Overriding params: {params_override}')
|
|
print(f'* Overriding vocab: {vocab_override}')
|
|
else:
|
|
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
|
converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override)
|
|
converter.save()
|
|
print(f'* Successful completion. Output saved to: {cfg.output}')
|
|
|
|
main()
|