mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
7494c78428
* llama : sync gguf-llama with llama * tests : fix build + warnings (test-tokenizer-1 still fails) * tests : fix wstring_convert * convert : fix layer names * llama : sync gguf-llama.cpp * convert : update HF converter to new tokenizer voodoo magics
96 lines
5.8 KiB
Python
96 lines
5.8 KiB
Python
# Recommended mapping of model tensor names for storage in gguf
|
|
|
|
def get_tensor_namemap( n_blocks : int):
|
|
tensor_map = {}
|
|
# Token embeddings
|
|
mapped_to = "token_embd"
|
|
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
|
|
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
|
|
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
|
|
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
|
|
tensor_map["tok_embeddings"] = mapped_to # llama-pth
|
|
# Position embeddings
|
|
mapped_to = "pos_embd"
|
|
tensor_map["transformer.wpe"] = mapped_to # gpt2
|
|
# Output norm
|
|
mapped_to = "output_norm"
|
|
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
|
|
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
|
|
tensor_map["transformer.norm_f"] = mapped_to # mpt
|
|
tensor_map["model.norm"] = mapped_to # llama-hf
|
|
tensor_map["norm"] = mapped_to # llama-pth
|
|
# Output
|
|
mapped_to = "output"
|
|
tensor_map["embed_out"] = mapped_to # gptneox
|
|
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
|
|
tensor_map["output"] = mapped_to # llama-pth
|
|
# Attention and fee-forward layer blocks
|
|
for i in range(0,n_blocks):
|
|
# Attention norm
|
|
mapped_to = "blk."+str(i)+".attn_norm"
|
|
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
|
|
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
|
|
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
|
|
tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
|
|
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
|
|
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
|
|
# Attention norm 2
|
|
mapped_to = "blk."+str(i)+".attn_norm_2"
|
|
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
|
|
# Attention query-key-value
|
|
mapped_to = "blk."+str(i)+".attn_qkv"
|
|
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
|
|
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
|
|
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
|
|
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
|
|
# Attention query
|
|
mapped_to = "blk."+str(i)+".attn_q"
|
|
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
|
|
# Attention key
|
|
mapped_to = "blk."+str(i)+".attn_k"
|
|
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
|
|
# Attention value
|
|
mapped_to = "blk."+str(i)+".attn_v"
|
|
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
|
|
# Attention output
|
|
mapped_to = "blk."+str(i)+".attn_output"
|
|
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
|
|
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
|
|
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
|
|
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
|
|
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
|
|
# Feed-forward norm
|
|
mapped_to = "blk."+str(i)+".ffn_norm"
|
|
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
|
|
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
|
|
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
|
|
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
|
|
# Feed-forward up
|
|
mapped_to = "blk."+str(i)+".ffn_up"
|
|
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
|
|
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
|
|
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
|
|
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
|
|
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
|
|
# Feed-forward gate
|
|
mapped_to = "blk."+str(i)+".ffn_gate"
|
|
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
|
|
# Feed-forward down
|
|
mapped_to = "blk."+str(i)+".ffn_down"
|
|
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
|
|
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
|
|
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
|
|
tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
|
|
tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
|
|
tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
|
|
|
|
return tensor_map
|