llama.cpp/examples/server/tests/features/results.feature
Georgi Gerganov 1cc0155d04
server : tuning tests (#7388)
* server : don't pass temperature as string

* server : increase timeout

* tests : fix the fix 0.8f -> 0.8

ggml-ci

* tests : set explicit temperature
2024-05-20 10:16:41 +03:00

120 lines
4.4 KiB
Gherkin

@llama.cpp
@results
Feature: Results
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
And a model file test-model-00001-of-00003.gguf
And 128 as batch size
And 1024 KV cache size
And 128 max tokens to predict
And continuous batching
Scenario Outline: consistent results with same seed
Given <n_slots> slots
And 0.0 temperature
Then the server is starting
Then the server is healthy
Given 4 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all predictions are equal
Examples:
| n_slots |
| 1 |
| 2 |
Scenario Outline: different results with different seed
Given <n_slots> slots
And 1.0 temperature
Then the server is starting
Then the server is healthy
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 43
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 44
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 45
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all predictions are different
Examples:
| n_slots |
| 1 |
| 2 |
Scenario Outline: consistent results with same seed and varying batch size
Given 4 slots
And <temp> temperature
# And 0 as draft
Then the server is starting
Then the server is healthy
Given 1 prompts "Write a very long story about AI." with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Given <n_parallel> prompts "Write a very long story about AI." with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Then all predictions are equal
Examples:
| n_parallel | temp |
| 1 | 0.0 |
| 2 | 0.0 |
| 4 | 0.0 |
| 1 | 1.0 |
# FIXME: These tests fail on master.
# Problems: unified KV cache (except for CPU backend with LLAMA_NO_LLAMAFILE=1), SIMD nondeterminism.
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
# | 2 | 1.0 |
# | 4 | 1.0 |
Scenario Outline: consistent token probs with same seed and prompt
Given <n_slots> slots
And <n_kv> KV cache size
And 1.0 temperature
And <n_predict> max tokens to predict
Then the server is starting
Then the server is healthy
Given 1 prompts "The meaning of life is" with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Given <n_parallel> prompts "The meaning of life is" with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Then all token probabilities are equal
Examples:
| n_slots | n_kv | n_predict | n_parallel |
| 4 | 1024 | 1 | 1 |
| 4 | 1024 | 1 | 4 |
# FIXME: These tests fail on master.
# Problems: unified KV cache (except for CPU backend with LLAMA_NO_LLAMAFILE=1), SIMD nondeterminism.
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
# | 4 | 1024 | 100 | 1 |
# This test still fails even the above patches; the first token probabilities are already different.
# | 4 | 1024 | 100 | 4 |