llama.cpp/examples/imatrix/imatrix.cpp
Pierrick Hymbert 0c4d489e29
quantize: add imatrix and dataset metadata in GGUF (#6658)
* imatrix: save the dataset file used in the output file

* llama: support kv overrides type string string

* common: factorize KV Overrides parsing between common and server

* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656

* llama: remove kv override str_value initialization as it does not compile on some toolchain

* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`

* quantize: add imatrix filename in KV

* llama: add llama_model_kv_override_free

* common: add llama_model_kv_override_free
common: free kv override if used after model loading

* llama: finally move the string KV override value to the stack

* llama : minor

* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.

Co-authored-by: slaren <slarengh@gmail.com>

* kv override: ensure string termination

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26 20:06:33 +02:00

667 lines
23 KiB
C++

#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <sstream>
#include <thread>
#include <mutex>
#include <vector>
#include <fstream>
#include <unordered_map>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
struct Stats {
std::vector<float> values;
int ncall = 0;
};
struct StatParams {
std::string dataset;
std::string ofile = "imatrix.dat";
int n_output_frequency = 10;
int verbosity = 1;
int keep_every = 0;
bool collect_output_weight = false;
};
class IMatrixCollector {
public:
IMatrixCollector() = default;
void set_parameters(StatParams&& params) { m_params = std::move(params); }
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
void save_imatrix() const;
bool load_imatrix(const char * file_name, bool add);
static bool load_imatrix(const char * file_name, std::unordered_map<std::string, Stats>& imatrix);
private:
std::unordered_map<std::string, Stats> m_stats;
StatParams m_params;
std::mutex m_mutex;
int m_last_call = 0;
std::vector<float> m_src1_data;
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
//
void save_imatrix(const char * file_name, const char * dataset) const;
void keep_imatrix(int ncall) const;
};
// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
static std::string filter_tensor_name(const char * name) {
std::string wname;
const char * p = strchr(name, '#');
if (p != NULL) {
p = p + 1;
const char * q = strchr(p, '#');
if (q != NULL) {
wname = std::string(p, q - p);
} else {
wname = p;
}
} else {
wname = name;
}
return wname;
}
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
GGML_UNUSED(user_data);
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
std::string wname = filter_tensor_name(src0->name);
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
if (ask) {
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
if (t->op != GGML_OP_MUL_MAT) return false;
// why are small batches ignored (<16 tokens)?
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
return true;
}
std::lock_guard<std::mutex> lock(m_mutex);
// copy the data from the GPU memory if needed
const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
if (!is_host) {
m_src1_data.resize(ggml_nelements(src1));
ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1));
}
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
// this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) {
// ids -> [n_experts_used, n_tokens]
// src1 -> [cols, n_expert_used, n_tokens]
const ggml_tensor * ids = t->src[2];
const int n_as = src0->ne[2];
const int n_ids = ids->ne[0];
// the top-k selected expert ids are stored in the ids tensor
// for simplicity, always copy ids to host, because it is small
// take into account that ids is not contiguous!
GGML_ASSERT(ids->ne[1] == src1->ne[2]);
m_ids.resize(ggml_nbytes(ids));
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
auto & e = m_stats[wname];
++e.ncall;
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
// using the following line, we can correct for that if needed by replacing the line above with:
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
exit(1); //GGML_ASSERT(false);
}
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
}
// loop over all possible experts, regardless if they are used or not in the batch
for (int ex = 0; ex < n_as; ++ex) {
size_t e_start = ex*src1->ne[0];
for (int idx = 0; idx < n_ids; ++idx) {
for (int row = 0; row < (int)src1->ne[2]; ++row) {
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
if (excur != ex) continue;
const int64_t i11 = idx % src1->ne[1];
const int64_t i12 = row;
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];
}
}
}
if (e.ncall > m_last_call) {
m_last_call = e.ncall;
if (m_last_call % m_params.n_output_frequency == 0) {
save_imatrix();
}
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) {
keep_imatrix(m_last_call);
}
}
}
} else {
auto& e = m_stats[wname];
if (e.values.empty()) {
e.values.resize(src1->ne[0], 0);
}
else if (e.values.size() != (size_t)src1->ne[0]) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
exit(1); //GGML_ASSERT(false);
}
++e.ncall;
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
}
for (int row = 0; row < (int)src1->ne[1]; ++row) {
const float * x = data + row * src1->ne[0];
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[j] += x[j]*x[j];
}
}
if (e.ncall > m_last_call) {
m_last_call = e.ncall;
if (m_last_call % m_params.n_output_frequency == 0) {
save_imatrix();
}
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) {
keep_imatrix(m_last_call);
}
}
}
return true;
}
void IMatrixCollector::save_imatrix() const {
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str());
}
void IMatrixCollector::keep_imatrix(int ncall) const {
auto file_name = m_params.ofile;
if (file_name.empty()) file_name = "imatrix.dat";
file_name += ".at_";
file_name += std::to_string(ncall);
save_imatrix(file_name.c_str(), m_params.dataset.c_str());
}
void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const {
std::ofstream out(fname, std::ios::binary);
int n_entries = m_stats.size();
out.write((const char *) &n_entries, sizeof(n_entries));
for (const auto & p : m_stats) {
int len = p.first.size();
out.write((const char *) &len, sizeof(len));
out.write(p.first.c_str(), len);
out.write((const char *) &p.second.ncall, sizeof(p.second.ncall));
int nval = p.second.values.size();
out.write((const char *) &nval, sizeof(nval));
if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
}
// Write the number of call the matrix was computed with
out.write((const char *) &m_last_call, sizeof(m_last_call));
// Write the dataset name at the end of the file to later on specify it in quantize
int n_dataset = strlen(dataset);
out.write((const char *) &n_dataset, sizeof(n_dataset));
out.write(dataset, n_dataset);
if (m_params.verbosity > 0) {
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname);
}
}
bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_map<std::string, Stats>& imatrix_data) {
std::ifstream in(imatrix_file, std::ios::binary);
if (!in) {
printf("%s: failed to open %s\n",__func__,imatrix_file);
return false;
}
int n_entries;
in.read((char*)&n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) {
printf("%s: no data in file %s\n", __func__, imatrix_file);
return false;
}
for (int i = 0; i < n_entries; ++i) {
int len; in.read((char *)&len, sizeof(len));
std::vector<char> name_as_vec(len+1);
in.read((char *)name_as_vec.data(), len);
if (in.fail()) {
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file);
return false;
}
name_as_vec[len] = 0;
std::string name{name_as_vec.data()};
auto& e = imatrix_data[std::move(name)];
int ncall;
in.read((char*)&ncall, sizeof(ncall));
int nval;
in.read((char *)&nval, sizeof(nval));
if (in.fail() || nval < 1) {
printf("%s: failed reading number of values for entry %d\n",__func__,i);
imatrix_data = {};
return false;
}
e.values.resize(nval);
in.read((char*)e.values.data(), nval*sizeof(float));
if (in.fail()) {
printf("%s: failed reading data for entry %d\n",__func__,i);
imatrix_data = {};
return false;
}
e.ncall = ncall;
}
return true;
}
bool IMatrixCollector::load_imatrix(const char * file_name, bool add) {
if (!add) {
m_stats.clear();
}
return load_imatrix(file_name, m_stats);
}
static IMatrixCollector g_collector;
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
return g_collector.collect_imatrix(t, ask, user_data);
}
struct results_log_softmax {
double log_softmax;
float logit;
float prob;
};
static std::vector<float> softmax(const std::vector<float>& logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) {
max_logit = std::max(max_logit, v);
}
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
const float logit = logits[i] - max_logit;
const float exp_logit = expf(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) {
probs[i] /= sum_exp;
}
return probs;
}
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
float max_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) {
max_logit = std::max(max_logit, logits[i]);
}
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) {
sum_exp += expf(logits[i] - max_logit);
}
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}
static void process_logits(
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
double & nll, double & nll2, float * logit_history, float * prob_history
) {
std::mutex mutex;
int counter = 0;
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
double local_nll = 0;
double local_nll2 = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
nll += local_nll; nll2 += local_nll2;
break;
}
lock.unlock();
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
const double v = -results.log_softmax;
local_nll += v;
local_nll2 += v*v;
logit_history[i] = results.logit;
prob_history[i] = results.prob;
}
};
for (auto & w : workers) {
w = std::thread(compute);
}
compute();
for (auto & w : workers) {
w.join();
}
}
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
const int n_ctx = llama_n_ctx(ctx);
auto tim1 = std::chrono::high_resolution_clock::now();
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
auto tim2 = std::chrono::high_resolution_clock::now();
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
if (from_chunk > 0) {
if (size_t((from_chunk + 2)*n_ctx) >= tokens.size()) {
fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, from_chunk);
return false;
}
fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, from_chunk, from_chunk*n_ctx);
tokens.erase(tokens.begin(), tokens.begin() + from_chunk*n_ctx);
}
if (int(tokens.size()) < 2*n_ctx) {
fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
n_ctx);
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
return false;
}
std::vector<float> logit_history;
std::vector<float> prob_history;
if (compute_ppl) {
logit_history.resize(tokens.size());
prob_history.resize(tokens.size());
}
const int n_chunk_max = tokens.size() / n_ctx;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_batch = params.n_batch;
int count = 0;
double nll = 0.0;
double nll2 = 0.0;
fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
std::vector<float> logits;
if (compute_ppl && num_batches > 1) {
logits.reserve((size_t)n_ctx * n_vocab);
}
for (int i = 0; i < n_chunk; ++i) {
const int start = i * n_ctx;
const int end = start + n_ctx;
std::vector<float> logits;
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
// save original token and restore it after eval
const auto token_org = tokens[batch_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
}
// TODO: use batch.logits to save computations instead of relying on logits_all == true
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
// restore the original token in case it was set to BOS
tokens[batch_start] = token_org;
if (compute_ppl && num_batches > 1) {
const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
}
}
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) {
fprintf(stderr, "%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
}
if (compute_ppl) {
const int first = n_ctx/2;
const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
count += n_ctx - first - 1;
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
fflush(stdout);
logits.clear();
}
}
printf("\n");
if (compute_ppl) {
nll2 /= count;
nll /= count;
const double ppl = exp(nll);
nll2 -= nll * nll;
if (nll2 > 0) {
nll2 = sqrt(nll2/(count-1));
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
} else {
printf("Unexpected negative standard deviation of log(prob)\n");
}
}
return true;
}
int main(int argc, char ** argv) {
StatParams sparams;
std::string prev_result_file;
std::string combine_files;
bool compute_ppl = true;
int from_chunk = 0;
std::vector<char*> args;
args.push_back(argv[0]);
int iarg = 1;
for (; iarg < argc-1; ++iarg) {
std::string arg{argv[iarg]};
if (arg == "-o" || arg == "--output-file") {
sparams.ofile = argv[++iarg];
}
else if (arg == "-ofreq" || arg == "--output-frequency") {
sparams.n_output_frequency = std::stoi(argv[++iarg]);
}
else if (arg == "-ow" || arg == "--output-weight") {
sparams.collect_output_weight = std::stoi(argv[++iarg]);
}
else if (arg == "--verbosity") {
sparams.verbosity = std::stoi(argv[++iarg]);
} else if (arg == "--no-ppl") {
compute_ppl = false;
} else if (arg == "--keep-imatrix") {
sparams.keep_every = std::stoi(argv[++iarg]);
} else if (arg == "--continue-from") {
prev_result_file = argv[++iarg];
} else if (arg == "--combine") {
combine_files = argv[++iarg];
}
else if (arg == "--from-chunk") {
from_chunk = std::stoi(argv[++iarg]);
} else {
args.push_back(argv[iarg]);
}
}
if (iarg < argc) {
std::string arg{argv[iarg]};
if (arg == "--no-ppl") {
compute_ppl = false;
} else {
args.push_back(argv[iarg]);
}
}
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
return 1;
}
params.logits_all = true;
params.n_batch = std::min(params.n_batch, params.n_ctx);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
sparams.dataset = params.prompt_file;
g_collector.set_parameters(std::move(sparams));
if (!combine_files.empty()) {
std::vector<std::string> files;
size_t pos = 0;
while (true) {
auto new_pos = combine_files.find(',', pos);
if (new_pos != std::string::npos) {
files.emplace_back(combine_files.substr(pos, new_pos - pos));
pos = new_pos + 1;
} else {
files.emplace_back(combine_files.substr(pos));
break;
}
}
if (files.size() < 2) {
fprintf(stderr, "You must provide at least two comma separated files to use --combine\n");
return 1;
}
printf("Combining the following %d files\n", int(files.size()));
for (auto& file : files) {
printf(" %s\n", file.c_str());
if (!g_collector.load_imatrix(file.c_str(), true)) {
fprintf(stderr, "Failed to load %s\n", file.c_str());
return 1;
}
}
g_collector.save_imatrix();
return 0;
}
if (!prev_result_file.empty()) {
if (!g_collector.load_imatrix(prev_result_file.c_str(), false)) {
fprintf(stderr, "=============== Failed to load %s\n", prev_result_file.c_str());
return 1;
}
}
llama_backend_init();
llama_numa_init(params.numa);
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = ik_collect_imatrix;
params.cb_eval_user_data = NULL;
params.warmup = false;
// init
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
if (params.n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);
if (!OK) {
return 1;
}
g_collector.save_imatrix();
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}