mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-29 04:44:34 +00:00
458 lines
19 KiB
C++
458 lines
19 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <fstream>
|
|
#include <cmath>
|
|
|
|
struct quant_option {
|
|
std::string name;
|
|
llama_ftype ftype;
|
|
std::string desc;
|
|
};
|
|
|
|
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
|
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
|
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
|
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
|
|
{ "IQ2_XXS", LLAMA_FTYPE_MOSTLY_IQ2_XXS, " 2.06 bpw quantization", },
|
|
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
|
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
|
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
|
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
|
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
|
{ "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", },
|
|
{ "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", },
|
|
{ "Q1_3", LLAMA_FTYPE_MOSTLY_Q1_3, " 1.63 bpw for BitNet b1.58", },
|
|
{ "Q2_2", LLAMA_FTYPE_MOSTLY_Q2_2, " 2.00 bpw for BitNet b1.58", },
|
|
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
|
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
|
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
|
|
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
|
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
|
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
|
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
|
|
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
|
|
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
|
|
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
|
|
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
|
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
|
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
|
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
|
|
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
|
|
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
|
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
|
|
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
|
|
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
|
|
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
|
|
{ "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
|
{ "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
|
{ "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
|
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
|
|
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
|
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
|
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
|
|
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
|
};
|
|
|
|
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
|
|
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
|
|
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
|
|
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
|
|
|
|
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
|
|
std::string ftype_str;
|
|
|
|
for (auto ch : ftype_str_in) {
|
|
ftype_str.push_back(std::toupper(ch));
|
|
}
|
|
for (auto & it : QUANT_OPTIONS) {
|
|
if (it.name == ftype_str) {
|
|
ftype = it.ftype;
|
|
ftype_str_out = it.name;
|
|
return true;
|
|
}
|
|
}
|
|
try {
|
|
int ftype_int = std::stoi(ftype_str);
|
|
for (auto & it : QUANT_OPTIONS) {
|
|
if (it.ftype == ftype_int) {
|
|
ftype = it.ftype;
|
|
ftype_str_out = it.name;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
catch (...) {
|
|
// stoi failed
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// usage:
|
|
// ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
|
|
//
|
|
[[noreturn]]
|
|
static void usage(const char * executable) {
|
|
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
|
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
|
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
|
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
|
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
|
|
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
|
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
|
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
|
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
|
printf(" --keep-split: will generate quatized model in the same shards as input");
|
|
printf(" --override-kv KEY=TYPE:VALUE\n");
|
|
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
|
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
|
printf("\nAllowed quantization types:\n");
|
|
for (auto & it : QUANT_OPTIONS) {
|
|
if (it.name != "COPY") {
|
|
printf(" %2d or ", it.ftype);
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
|
|
}
|
|
exit(1);
|
|
}
|
|
|
|
static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
|
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
|
|
if (!in) {
|
|
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
|
|
exit(1);
|
|
}
|
|
int n_entries;
|
|
in.read((char *)&n_entries, sizeof(n_entries));
|
|
if (in.fail() || n_entries < 1) {
|
|
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
|
|
exit(1);
|
|
}
|
|
for (int i = 0; i < n_entries; ++i) {
|
|
int len; in.read((char *)&len, sizeof(len));
|
|
std::vector<char> name_as_vec(len+1);
|
|
in.read((char *)name_as_vec.data(), len);
|
|
if (in.fail()) {
|
|
printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
|
|
exit(1);
|
|
}
|
|
name_as_vec[len] = 0;
|
|
std::string name{name_as_vec.data()};
|
|
auto & e = imatrix_data[name];
|
|
int ncall;
|
|
in.read((char *)&ncall, sizeof(ncall));
|
|
int nval;
|
|
in.read((char *)&nval, sizeof(nval));
|
|
if (in.fail() || nval < 1) {
|
|
printf("%s: failed reading number of values for entry %d\n", __func__, i);
|
|
imatrix_data = {};
|
|
exit(1);
|
|
}
|
|
e.resize(nval);
|
|
in.read((char *)e.data(), nval*sizeof(float));
|
|
if (in.fail()) {
|
|
printf("%s: failed reading data for entry %d\n", __func__, i);
|
|
imatrix_data = {};
|
|
exit(1);
|
|
}
|
|
if (ncall > 0) {
|
|
for (auto& v : e) v /= ncall;
|
|
}
|
|
|
|
if (getenv("LLAMA_TRACE")) {
|
|
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
|
|
}
|
|
}
|
|
|
|
// latest imatrix version contains the dataset filename at the end of the file
|
|
int m_last_call = 0;
|
|
if (in.peek() != EOF) {
|
|
in.read((char *)&m_last_call, sizeof(m_last_call));
|
|
int dataset_len;
|
|
in.read((char *)&dataset_len, sizeof(dataset_len));
|
|
std::vector<char> dataset_as_vec(dataset_len);
|
|
in.read(dataset_as_vec.data(), dataset_len);
|
|
imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
|
|
printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
|
|
}
|
|
printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
|
|
return m_last_call;
|
|
}
|
|
|
|
static int prepare_imatrix(const std::string & imatrix_file,
|
|
std::string & imatrix_dataset,
|
|
const std::vector<std::string> & included_weights,
|
|
const std::vector<std::string> & excluded_weights,
|
|
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
|
int m_last_call = -1;
|
|
if (!imatrix_file.empty()) {
|
|
m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
|
|
}
|
|
if (imatrix_data.empty()) {
|
|
return m_last_call;
|
|
}
|
|
if (!excluded_weights.empty()) {
|
|
for (auto& name : excluded_weights) {
|
|
for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
|
|
auto pos = it->first.find(name);
|
|
if (pos != std::string::npos) it = imatrix_data.erase(it);
|
|
else ++it;
|
|
}
|
|
}
|
|
}
|
|
if (!included_weights.empty()) {
|
|
std::unordered_map<std::string, std::vector<float>> tmp;
|
|
for (auto& name : included_weights) {
|
|
for (auto& e : imatrix_data) {
|
|
auto pos = e.first.find(name);
|
|
if (pos != std::string::npos) {
|
|
tmp.emplace(std::move(e));
|
|
}
|
|
}
|
|
}
|
|
imatrix_data = std::move(tmp);
|
|
}
|
|
if (!imatrix_data.empty()) {
|
|
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
|
|
}
|
|
return m_last_call;
|
|
}
|
|
|
|
static ggml_type parse_ggml_type(const char * arg) {
|
|
ggml_type result = GGML_TYPE_COUNT;
|
|
for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
|
|
auto type = ggml_type(j);
|
|
const auto * name = ggml_type_name(type);
|
|
if (name && strcmp(arg, name) == 0) {
|
|
result = type; break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
if (argc < 3) {
|
|
usage(argv[0]);
|
|
}
|
|
|
|
llama_model_quantize_params params = llama_model_quantize_default_params();
|
|
|
|
int arg_idx = 1;
|
|
std::string imatrix_file;
|
|
std::vector<std::string> included_weights, excluded_weights;
|
|
std::vector<llama_model_kv_override> kv_overrides;
|
|
|
|
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
|
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
|
params.quantize_output_tensor = false;
|
|
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
|
|
if (arg_idx < argc-1) {
|
|
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
} else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
|
|
if (arg_idx < argc-1) {
|
|
params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
|
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
|
usage(argv[0]);
|
|
}
|
|
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
|
params.allow_requantize = true;
|
|
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
|
|
params.pure = true;
|
|
} else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
|
|
if (arg_idx < argc-1) {
|
|
imatrix_file = argv[++arg_idx];
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
} else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
|
|
if (arg_idx < argc-1) {
|
|
included_weights.emplace_back(argv[++arg_idx]);
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
} else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
|
|
if (arg_idx < argc-1) {
|
|
excluded_weights.emplace_back(argv[++arg_idx]);
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
} else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
|
|
params.keep_split = true;
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
}
|
|
|
|
if (argc - arg_idx < 2) {
|
|
printf("%s: bad arguments\n", argv[0]);
|
|
usage(argv[0]);
|
|
}
|
|
if (!included_weights.empty() && !excluded_weights.empty()) {
|
|
usage(argv[0]);
|
|
}
|
|
|
|
std::string imatrix_dataset;
|
|
std::unordered_map<std::string, std::vector<float>> imatrix_data;
|
|
int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
|
|
if (!imatrix_data.empty()) {
|
|
params.imatrix = &imatrix_data;
|
|
{
|
|
llama_model_kv_override kvo;
|
|
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
|
strncpy(kvo.val_str, imatrix_file.c_str(), 127);
|
|
kvo.val_str[127] = '\0';
|
|
kv_overrides.emplace_back(std::move(kvo));
|
|
}
|
|
if (!imatrix_dataset.empty()) {
|
|
llama_model_kv_override kvo;
|
|
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
|
strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
|
|
kvo.val_str[127] = '\0';
|
|
kv_overrides.emplace_back(std::move(kvo));
|
|
}
|
|
|
|
{
|
|
llama_model_kv_override kvo;
|
|
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
|
kvo.val_i64 = imatrix_data.size();
|
|
kv_overrides.emplace_back(std::move(kvo));
|
|
}
|
|
|
|
if (m_last_call > 0) {
|
|
llama_model_kv_override kvo;
|
|
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
|
|
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
|
kvo.val_i64 = m_last_call;
|
|
kv_overrides.emplace_back(std::move(kvo));
|
|
}
|
|
}
|
|
if (!kv_overrides.empty()) {
|
|
kv_overrides.emplace_back();
|
|
kv_overrides.back().key[0] = 0;
|
|
params.kv_overrides = &kv_overrides;
|
|
}
|
|
|
|
llama_backend_init();
|
|
|
|
// parse command line arguments
|
|
const std::string fname_inp = argv[arg_idx];
|
|
arg_idx++;
|
|
std::string fname_out;
|
|
|
|
std::string ftype_str;
|
|
std::string suffix = ".gguf";
|
|
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
|
std::string fpath;
|
|
const size_t pos = fname_inp.find_last_of("/\\");
|
|
if (pos != std::string::npos) {
|
|
fpath = fname_inp.substr(0, pos + 1);
|
|
}
|
|
|
|
// export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
|
|
fname_out = fpath + "ggml-model-" + ftype_str;
|
|
if (!params.keep_split) {
|
|
fname_out += suffix;
|
|
}
|
|
arg_idx++;
|
|
if (ftype_str == "COPY") {
|
|
params.only_copy = true;
|
|
}
|
|
} else {
|
|
fname_out = argv[arg_idx];
|
|
if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
|
|
fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
|
|
}
|
|
arg_idx++;
|
|
|
|
if (argc <= arg_idx) {
|
|
fprintf(stderr, "%s: missing ftype\n", __func__);
|
|
return 1;
|
|
}
|
|
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
|
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
|
|
return 1;
|
|
}
|
|
if (ftype_str == "COPY") {
|
|
params.only_copy = true;
|
|
}
|
|
arg_idx++;
|
|
}
|
|
|
|
// parse nthreads
|
|
if (argc > arg_idx) {
|
|
try {
|
|
params.nthread = std::stoi(argv[arg_idx]);
|
|
}
|
|
catch (const std::exception & e) {
|
|
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
|
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
|
|
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
|
|
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
|
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
|
|
fprintf(stderr, "\n==========================================================================================================\n");
|
|
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
|
fprintf(stderr, "==========================================================================================================\n\n\n");
|
|
return 1;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
|
|
if (params.nthread > 0) {
|
|
fprintf(stderr, " using %d threads", params.nthread);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
|
|
const int64_t t_main_start_us = llama_time_us();
|
|
|
|
int64_t t_quantize_us = 0;
|
|
|
|
// load the model
|
|
{
|
|
const int64_t t_start_us = llama_time_us();
|
|
|
|
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
|
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_quantize_us = llama_time_us() - t_start_us;
|
|
}
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = llama_time_us();
|
|
|
|
printf("\n");
|
|
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
|
}
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|