llama.cpp/convert_lora_to_gguf.py
compilade 328884f421
gguf-py : fix some metadata name extraction edge cases (#8591)
* gguf-py : fix some metadata name extraction edge cases

* convert_lora : use the lora dir for the model card path

* gguf-py : more metadata edge cases fixes

Multiple finetune versions are now joined together,
and the removal of the basename annotation on trailing versions
is more robust.

* gguf-py : add more name metadata extraction tests

* convert_lora : fix default filename

The default filename was previously hardcoded.

* convert_hf : Model.fname_out can no longer be None

* gguf-py : do not use title case for naming convention

Some models use acronyms in lowercase,
which can't be title-cased like other words,
so it's best to simply use the same case
as in the original model name.

Note that the size label still has an uppercased suffix
to make it distinguishable from the context size of a finetune.
2024-07-20 21:58:49 -04:00

394 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
from dataclasses import dataclass
import logging
import argparse
import os
import sys
import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
import torch
if TYPE_CHECKING:
from torch import Tensor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, Model
logger = logging.getLogger("lora-to-gguf")
@dataclass
class PartialLoraTensor:
A: Tensor | None = None
B: Tensor | None = None
# magic to support tensor shape modifications and splitting
class LoraTorchTensor:
_lora_A: Tensor # (n_rank, row_size)
_lora_B: Tensor # (col_size, n_rank)
_rank: int
def __init__(self, A: Tensor, B: Tensor):
assert len(A.shape) == len(B.shape)
assert A.shape[-2] == B.shape[-1]
if A.dtype != B.dtype:
A = A.to(torch.float32)
B = B.to(torch.float32)
self._lora_A = A
self._lora_B = B
self._rank = B.shape[-1]
def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
return (self._lora_A, self._lora_B)
def __getitem__(
self,
indices: (
SupportsIndex
| slice
| tuple[SupportsIndex | slice | Tensor, ...] # TODO: add ellipsis in the type signature
),
) -> LoraTorchTensor:
shape = self.shape
if isinstance(indices, SupportsIndex):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
else:
raise NotImplementedError # can't return a vector
elif isinstance(indices, slice):
if len(shape) > 2:
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
else:
return LoraTorchTensor(self._lora_A, self._lora_B[indices])
elif isinstance(indices, tuple):
assert len(indices) > 0
if indices[-1] is Ellipsis:
return self[indices[:-1]]
# expand ellipsis
indices = tuple(
u
for v in (
(
(slice(None, None) for _ in range(len(indices) - 1))
if i is Ellipsis
else (i,)
)
for i in indices
)
for u in v
)
if len(indices) < len(shape):
indices = (*indices, *(slice(None, None) for _ in range(len(indices), len(shape))))
# TODO: make sure this is correct
indices_A = (
*(
(
j.__index__() % self._lora_A.shape[i]
if isinstance(j, SupportsIndex)
else slice(None, None)
)
for i, j in enumerate(indices[:-2])
),
slice(None, None),
indices[-1],
)
indices_B = indices[:-1]
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
else:
raise NotImplementedError # unknown indice type
@property
def dtype(self) -> torch.dtype:
assert self._lora_A.dtype == self._lora_B.dtype
return self._lora_A.dtype
@property
def shape(self) -> tuple[int, ...]:
assert len(self._lora_A.shape) == len(self._lora_B.shape)
return (*self._lora_B.shape[:-1], self._lora_A.shape[-1])
def size(self, dim=None):
assert dim is None
return self.shape
def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
if isinstance(shape[0], tuple):
new_shape: tuple[int, ...] = shape[0]
else:
new_shape = cast(tuple[int, ...], shape)
orig_shape = self.shape
if len(new_shape) < 2:
raise NotImplementedError # can't become a vector
# expand -1 in the shape
if any(dim == -1 for dim in new_shape):
n_elems = prod(orig_shape)
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
assert n_elems % n_new_elems == 0
new_shape = (*(dim if dim != -1 else n_elems // n_new_elems for dim in new_shape),)
if new_shape[-1] != orig_shape[-1]:
raise NotImplementedError # can't reshape the row size trivially
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
shape_B = (*new_shape[:-1], self._rank)
return LoraTorchTensor(
self._lora_A.reshape(shape_A),
self._lora_B.reshape(shape_B),
)
def reshape_as(self, other: Tensor) -> LoraTorchTensor:
return self.reshape(*other.shape)
def view(self, *size: int) -> LoraTorchTensor:
return self.reshape(*size)
def permute(self, *dims: int) -> LoraTorchTensor:
shape = self.shape
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
if dims[-1] == -1:
# TODO: support higher dimensional A shapes bigger than 1
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
return LoraTorchTensor(self._lora_B.permute(*dims), self._lora_A.permute(*dims))
else:
# TODO: compose the above two
raise NotImplementedError
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
shape = self.shape
dims = [i for i in range(len(shape))]
dims[dim0], dims[dim1] = dims[dim1], dims[dim0]
return self.permute(*dims)
def swapaxes(self, axis0: int, axis1: int) -> LoraTorchTensor:
return self.transpose(axis0, axis1)
def to(self, *args, **kwargs):
return LoraTorchTensor(self._lora_A.to(*args, **kwargs), self._lora_B.to(*args, **kwargs))
@classmethod
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
del types # unused
if kwargs is None:
kwargs = {}
if func is torch.permute:
return type(args[0]).permute(*args, **kwargs)
elif func is torch.reshape:
return type(args[0]).reshape(*args, **kwargs)
elif func is torch.stack:
assert isinstance(args[0], Sequence)
dim = kwargs.get("dim", 0)
assert dim == 0
return LoraTorchTensor(
torch.stack([a._lora_A for a in args[0]], dim),
torch.stack([b._lora_B for b in args[0]], dim),
)
elif func is torch.cat:
assert isinstance(args[0], Sequence)
dim = kwargs.get("dim", 0)
assert dim == 0
if len(args[0][0].shape) > 2:
return LoraTorchTensor(
torch.cat([a._lora_A for a in args[0]], dim),
torch.cat([b._lora_B for b in args[0]], dim),
)
elif all(torch.equal(args[0][0]._lora_A, t._lora_A) for t in args[0][1:]):
return LoraTorchTensor(
args[0][0]._lora_A,
torch.cat([b._lora_B for b in args[0]], dim),
)
else:
raise NotImplementedError
else:
raise NotImplementedError
def get_base_tensor_name(lora_tensor_name: str) -> str:
base_name = lora_tensor_name.replace("base_model.model.", "")
base_name = base_name.replace(".lora_A.weight", ".weight")
base_name = base_name.replace(".lora_B.weight", ".weight")
return base_name
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"--no-lazy", action="store_true",
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
parser.add_argument(
"--dry-run", action="store_true",
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
"--base", type=Path, required=True,
help="directory containing base model file",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing LoRA adapter file",
)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
"auto": gguf.LlamaFileType.GUESSED,
}
ftype = ftype_map[args.outtype]
dir_base_model: Path = args.base
dir_lora: Path = args.lora_path
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_lora
if os.path.exists(input_model):
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
lora_model = load_file(input_model, device="cpu")
else:
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
# load base model
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
except NotImplementedError:
logger.error(f"Model {hparams['architectures'][0]} is not supported")
sys.exit(1)
class LoraModel(model_class):
model_arch = model_class.model_arch
lora_alpha: float
def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
super().__init__(*args, **kwargs)
self.dir_model_card = dir_lora_model
self.lora_alpha = float(lora_alpha)
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
super().set_gguf_parameters()
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
tensor_map: dict[str, PartialLoraTensor] = {}
for name, tensor in lora_model.items():
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
sys.exit(1)
if base_name in tensor_map:
if is_lora_a:
tensor_map[base_name].A = tensor
else:
tensor_map[base_name].B = tensor
else:
if is_lora_a:
tensor_map[base_name] = PartialLoraTensor(A=tensor)
else:
tensor_map[base_name] = PartialLoraTensor(B=tensor)
for name, tensor in tensor_map.items():
assert tensor.A is not None
assert tensor.B is not None
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
dest = super().modify_tensors(data_torch, name, bid)
for dest_name, dest_data in dest:
assert isinstance(dest_data, LoraTorchTensor)
lora_a, lora_b = dest_data.get_lora_A_B()
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
alpha: float = lparams["lora_alpha"]
model_instance = LoraModel(
dir_base_model,
ftype,
fname_out,
is_big_endian=args.bigendian,
use_temp_file=False,
eager=args.no_lazy,
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
)
logger.info("Exporting model...")
model_instance.write()
logger.info(f"Model successfully exported to {model_instance.fname_out}")