llama.cpp/convert_lora_to_gguf.py
2024-07-08 21:55:41 +02:00

146 lines
5.2 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
import logging
import argparse
import os
import sys
import types
from pathlib import Path
from typing import TYPE_CHECKING, Iterable, Iterator
import torch
if TYPE_CHECKING:
from torch import Tensor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import Model
logger = logging.getLogger("lora-to-gguf")
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
parser.add_argument(
"--base", type=Path, required=True,
help="directory containing base model file",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing LoRA adapter file",
)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
}
ftype = ftype_map[args.outtype]
dir_base_model = args.base
dir_lora = args.lora_path
input_json = os.path.join(dir_lora, "adapter_config.json")
input_model = os.path.join(dir_lora, "adapter_model.bin")
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_lora / 'ggml-lora.gguf'
if os.path.exists(input_model):
lora_model = torch.load(input_model, map_location="cpu")
else:
input_model = os.path.join(dir_lora, "adapter_model.safetensors")
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
lora_model = load_file(input_model, device="cpu")
# load base model
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
except NotImplementedError:
logger.error(f"Model {hparams['architectures'][0]} is not supported")
sys.exit(1)
model_instance = model_class(dir_base_model, ftype, fname_out, args.bigendian, False, False, None)
logger.info("Set model parameters")
model_instance.set_gguf_parameters()
# adapter_config = json.load(input_json)
model_instance.gguf_writer.add_string("training.type", "finetune_lora")
map_tensors: dict[str, Tensor] = {}
for tensor_name, tensor in lora_model.items():
orig_name = tensor_name.replace("base_model.model.", "")
orig_name = orig_name.replace(".lora_A.weight", ".weight")
orig_name = orig_name.replace(".lora_B.weight", ".weight")
is_lora_a = ".lora_A.weight" in tensor_name
is_lora_b = ".lora_B.weight" in tensor_name
if not is_lora_a and not is_lora_b:
logger.error(f"Unexpected name '{tensor_name}': Not a lora_A or lora_B tensor")
sys.exit(1)
dest_name = model_instance.map_tensor_name(orig_name)
dest_name = f"{dest_name}.lora_a" if is_lora_a else f"{dest_name}.lora_b"
# logger.info(f"{orig_name} --> {dest_name}")
map_tensors[dest_name] = tensor
# overwrite method
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
for name, tensor in map_tensors.items():
yield (name, tensor)
# overwrite method
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# TODO: This will not take into account tensor transformations
return [(name, data_torch)]
# overwrite method
def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del name, new_name, bid, n_dims # unused
return ftype != gguf.LlamaFileType.ALL_F32
model_instance.get_tensors = types.MethodType(get_tensors, model_instance)
model_instance.modify_tensors = types.MethodType(modify_tensors, model_instance)
model_instance.extra_f16_tensors = types.MethodType(extra_f16_tensors, model_instance)
model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
logger.info("Exporting model...")
model_instance.write()
logger.info(f"Model successfully exported to {fname_out}")