llama.cpp/tests/test-quantize-fns.cpp
Kawrakow 4c4cb30736
IQ3_S: a much better alternative to Q3_K (#5676)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* Resurrecting iq3_xs

After all the experimentation, nothing was better than this.

* Minor PPL improvement via a block scale fudge factor

* Minor improvement via 3 neighbours

* iq3_xs: working scalar and AVX2 dot products

* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)

* iq3_xs: working Metal implementation

* Adding IQ3_M - IQ3_XS mix with mostly Q4_K

* iiq3_xs: a 3.4375 bpw variant

* iq3_xs: make CUDA work for new version

* iq3_xs: make scalar and AVX2 work for new version

* iq3_s: make ARM_NEON work with new version

* iq3_xs: make new version work on metal

Performance is very similar to Q3_K_S

* iq3_xs: tiny Metal speed improvement

* iq3_xs: tiny Metal speed improvement

* Fix stupid warning

* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS

* iq3_xs: rename to iq3_s

* iq3_s: make tests pass

* Move Q3_K_XS mix to 3.25 bpw

* Attempt to fix failing tests

* Another attempt to fix the Windows builds

* Attempt to fix ROCm

* ROCm again

* iq3_s: partial fix for QK_K = 64

* iq3_s: make it work on metal for QK_K = 64

Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.

* Will this fix ROCm?

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 16:23:52 +02:00

189 lines
6.6 KiB
C++

// Unit tests for quantization specific functions - quantize, dequantize and dot product
#include "ggml.h"
#undef NDEBUG
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
constexpr float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f;
constexpr float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f;
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f;
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f;
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS = 0.0050f;
constexpr float MAX_DOT_PRODUCT_ERROR = 0.02f;
constexpr float MAX_DOT_PRODUCT_ERROR_LOWBIT = 0.04f;
static const char* RESULT_STR[] = {"ok", "FAILED"};
// Generate synthetic data
static void generate_data(float offset, size_t n, float * dst) {
for (size_t i = 0; i < n; i++) {
dst[i] = 0.1 + 2*cosf(i + offset);
}
}
// Calculate RMSE between two float arrays
static float array_rmse(const float * a1, const float * a2, size_t n) {
double sum = 0;
for (size_t i = 0; i < n; i++) {
double diff = a1[i] - a2[i];
sum += diff * diff;
}
return sqrtf(sum) / n;
}
// Total quantization error on test data
static float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size);
qfns.from_float(test_data, tmp_q.data(), test_size);
qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
return array_rmse(test_data, tmp_out.data(), test_size);
}
// Total quantization error on test data
static float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size);
std::vector<float> tmp_out_ref(test_size);
qfns.from_float(test_data, tmp_q.data(), test_size);
qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
qfns.from_float_reference(test_data, tmp_q.data(), test_size);
qfns.to_float(tmp_q.data(), tmp_out_ref.data(), test_size);
return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size);
}
static float dot_product(const float * a1, const float * a2, size_t test_size) {
double sum = 0;
for (size_t i = 0; i < test_size; i++) {
sum += a1[i] * a2[i];
}
return sum;
}
// Total dot product error
static float dot_product_error(
ggml_type_traits_t & qfns, size_t test_size, const float * test_data1, const float *test_data2
) {
std::vector<uint8_t> tmp_q1(2*test_size);
std::vector<uint8_t> tmp_q2(2*test_size);
auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
qfns.from_float(test_data1, tmp_q1.data(), test_size);
vdot.from_float(test_data2, tmp_q2.data(), test_size);
float result = INFINITY;
qfns.vec_dot(test_size, &result, 0, tmp_q1.data(), 0, tmp_q2.data(), 0, 1);
const float dot_ref = dot_product(test_data1, test_data2, test_size);
return fabsf(result - dot_ref) / test_size;
}
int main(int argc, char * argv[]) {
bool verbose = false;
const size_t test_size = 32 * 128;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-v") {
verbose = true;
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
return 1;
}
}
std::vector<float> test_data(test_size);
std::vector<float> test_data2(test_size);
generate_data(0.0, test_data.size(), test_data.data());
generate_data(1.0, test_data2.size(), test_data2.data());
// Initialize GGML, ensures float conversion tables are initialized
struct ggml_init_params ggml_params = {
/* .mem_size = */ 1*1024,
/* .mem_buffer = */ NULL,
/* .no_alloc = */ true,
};
struct ggml_context * ctx = ggml_init(ggml_params);
int num_failed = 0;
bool failed = false;
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i;
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
// deprecated - skip
if (qfns.blck_size == 0) {
continue;
}
const ggml_type ei = (ggml_type)i;
if (ei == GGML_TYPE_IQ2_XXS || ei == GGML_TYPE_IQ2_XS) {
printf("Skip %s due to missing quantization functionality\n", ggml_type_name(ei));
continue;
}
printf("Testing %s\n", ggml_type_name((ggml_type) i));
ggml_quantize_init(ei);
if (qfns.from_float && qfns.to_float) {
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
const float max_quantization_error =
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
type == GGML_TYPE_IQ3_S ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
type == GGML_TYPE_IQ3_XXS ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS : MAX_QUANTIZATION_TOTAL_ERROR;
failed = !(total_error < max_quantization_error);
num_failed += failed;
if (failed || verbose) {
printf("%5s absolute quantization error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], total_error);
}
const float reference_error = reference_quantization_error(qfns, test_size, test_data.data());
failed = !(reference_error < MAX_QUANTIZATION_REFERENCE_ERROR);
num_failed += failed;
if (failed || verbose) {
printf("%5s reference implementation error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], reference_error);
}
const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data());
const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S ? MAX_DOT_PRODUCT_ERROR_LOWBIT
: MAX_DOT_PRODUCT_ERROR;
failed = !(vec_dot_error < max_allowed_error);
num_failed += failed;
if (failed || verbose) {
printf("%5s dot product error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], vec_dot_error);
}
}
}
if (num_failed || verbose) {
printf("%d tests failed\n", num_failed);
}
ggml_free(ctx);
return num_failed > 0;
}