mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 21:34:36 +00:00
38d1521608
* Use batched mul_mat pathway * rm extra line * Explicitly state scaled data type --------- Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
15199 lines
582 KiB
C++
15199 lines
582 KiB
C++
//
|
|
// MIT license
|
|
// Copyright (C) 2024 Intel Corporation
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <atomic>
|
|
#include <cinttypes>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <float.h>
|
|
#include <limits>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <vector>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
|
|
#include <sycl/sycl.hpp>
|
|
#include <sycl/half_type.hpp>
|
|
|
|
#include "ggml-sycl.h"
|
|
#include "ggml.h"
|
|
#include "ggml-backend-impl.h"
|
|
|
|
/*
|
|
Following definition copied from DPCT head files, which are used by ggml-sycl.cpp
|
|
*/
|
|
// COPY from DPCT head files
|
|
#include <sycl/sycl.hpp>
|
|
#include <oneapi/mkl.hpp>
|
|
#include <map>
|
|
|
|
#if defined(__linux__)
|
|
#include <sys/mman.h>
|
|
#elif defined(_WIN64)
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#else
|
|
#error "Only support Windows and Linux."
|
|
#endif
|
|
|
|
#if defined(__linux__)
|
|
#include <unistd.h>
|
|
#include <sys/syscall.h>
|
|
#endif
|
|
#if defined(_WIN64)
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#define DPCT_COMPATIBILITY_TEMP (900)
|
|
|
|
#if defined(_MSC_VER)
|
|
#define __dpct_align__(n) __declspec(align(n))
|
|
#define __dpct_inline__ __forceinline
|
|
#else
|
|
#define __dpct_align__(n) __attribute__((aligned(n)))
|
|
#define __dpct_inline__ __inline__ __attribute__((always_inline))
|
|
#endif
|
|
|
|
#if defined(_MSC_VER)
|
|
#define __dpct_noinline__ __declspec(noinline)
|
|
#else
|
|
#define __dpct_noinline__ __attribute__((noinline))
|
|
#endif
|
|
|
|
namespace dpct
|
|
{
|
|
typedef sycl::queue *queue_ptr;
|
|
typedef sycl::event *event_ptr;
|
|
typedef char *device_ptr;
|
|
typedef uint8_t byte_t;
|
|
typedef sycl::buffer<byte_t> buffer_t;
|
|
|
|
/// SYCL default exception handler
|
|
inline auto exception_handler = [](sycl::exception_list exceptions)
|
|
{
|
|
for (std::exception_ptr const &e : exceptions)
|
|
{
|
|
try
|
|
{
|
|
std::rethrow_exception(e);
|
|
}
|
|
catch (sycl::exception const &e)
|
|
{
|
|
std::cerr << "Caught asynchronous SYCL exception:" << std::endl
|
|
<< e.what() << std::endl
|
|
<< "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
}
|
|
}
|
|
};
|
|
|
|
enum error_code
|
|
{
|
|
success = 0,
|
|
default_error = 999
|
|
};
|
|
|
|
enum memcpy_direction
|
|
{
|
|
host_to_host,
|
|
host_to_device,
|
|
device_to_host,
|
|
device_to_device,
|
|
automatic
|
|
};
|
|
|
|
enum memory_region
|
|
{
|
|
global = 0, // device global memory
|
|
constant, // device constant memory
|
|
local, // device local memory
|
|
shared, // memory which can be accessed by host and device
|
|
};
|
|
|
|
enum class library_data_t : unsigned char
|
|
{
|
|
real_float = 0,
|
|
complex_float,
|
|
real_double,
|
|
complex_double,
|
|
real_half,
|
|
complex_half,
|
|
real_bfloat16,
|
|
complex_bfloat16,
|
|
real_int4,
|
|
complex_int4,
|
|
real_uint4,
|
|
complex_uint4,
|
|
real_int8,
|
|
complex_int8,
|
|
real_uint8,
|
|
complex_uint8,
|
|
real_int16,
|
|
complex_int16,
|
|
real_uint16,
|
|
complex_uint16,
|
|
real_int32,
|
|
complex_int32,
|
|
real_uint32,
|
|
complex_uint32,
|
|
real_int64,
|
|
complex_int64,
|
|
real_uint64,
|
|
complex_uint64,
|
|
real_int8_4,
|
|
real_int8_32,
|
|
real_uint8_4,
|
|
library_data_t_size
|
|
};
|
|
|
|
template <typename T>
|
|
struct DataType
|
|
{
|
|
using T2 = T;
|
|
};
|
|
template <typename T>
|
|
struct DataType<sycl::vec<T, 2>>
|
|
{
|
|
using T2 = std::complex<T>;
|
|
};
|
|
|
|
static void destroy_event(event_ptr event)
|
|
{
|
|
delete event;
|
|
}
|
|
|
|
static inline unsigned int get_tid()
|
|
{
|
|
#if defined(__linux__)
|
|
return syscall(SYS_gettid);
|
|
#elif defined(_WIN64)
|
|
return GetCurrentThreadId();
|
|
#else
|
|
#error "Only support Windows and Linux."
|
|
#endif
|
|
}
|
|
|
|
namespace detail
|
|
{
|
|
static void get_version(const sycl::device &dev, int &major, int &minor)
|
|
{
|
|
// Version string has the following format:
|
|
// a. OpenCL<space><major.minor><space><vendor-specific-information>
|
|
// b. <major.minor>
|
|
std::string ver;
|
|
ver = dev.get_info<sycl::info::device::version>();
|
|
std::string::size_type i = 0;
|
|
while (i < ver.size())
|
|
{
|
|
if (isdigit(ver[i]))
|
|
break;
|
|
i++;
|
|
}
|
|
major = std::stoi(&(ver[i]));
|
|
while (i < ver.size())
|
|
{
|
|
if (ver[i] == '.')
|
|
break;
|
|
i++;
|
|
}
|
|
i++;
|
|
minor = std::stoi(&(ver[i]));
|
|
}
|
|
|
|
template <typename tag, typename T>
|
|
class generic_error_type
|
|
{
|
|
public:
|
|
generic_error_type() = default;
|
|
generic_error_type(T value) : value{value} {}
|
|
operator T() const { return value; }
|
|
|
|
private:
|
|
T value;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/// Pitched 2D/3D memory data.
|
|
class pitched_data
|
|
{
|
|
public:
|
|
pitched_data() : pitched_data(nullptr, 0, 0, 0) {}
|
|
pitched_data(void *data, size_t pitch, size_t x, size_t y)
|
|
: _data(data), _pitch(pitch), _x(x), _y(y) {}
|
|
|
|
void *get_data_ptr() { return _data; }
|
|
void set_data_ptr(void *data) { _data = data; }
|
|
|
|
size_t get_pitch() { return _pitch; }
|
|
void set_pitch(size_t pitch) { _pitch = pitch; }
|
|
|
|
size_t get_x() { return _x; }
|
|
void set_x(size_t x) { _x = x; };
|
|
|
|
size_t get_y() { return _y; }
|
|
void set_y(size_t y) { _y = y; }
|
|
|
|
private:
|
|
void *_data;
|
|
size_t _pitch, _x, _y;
|
|
};
|
|
|
|
class device_info
|
|
{
|
|
public:
|
|
// get interface
|
|
const char *get_name() const { return _name; }
|
|
char *get_name() { return _name; }
|
|
template <typename WorkItemSizesTy = sycl::range<3>,
|
|
std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
|
|
std::is_same_v<WorkItemSizesTy, int *>,
|
|
int> = 0>
|
|
auto get_max_work_item_sizes() const
|
|
{
|
|
if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
|
|
return sycl::range<3>(_max_work_item_sizes_i[0],
|
|
_max_work_item_sizes_i[1],
|
|
_max_work_item_sizes_i[2]);
|
|
else
|
|
{
|
|
return _max_work_item_sizes_i;
|
|
}
|
|
}
|
|
template <typename WorkItemSizesTy = sycl::range<3>,
|
|
std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
|
|
std::is_same_v<WorkItemSizesTy, int *>,
|
|
int> = 0>
|
|
auto get_max_work_item_sizes()
|
|
{
|
|
if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
|
|
return sycl::range<3>(_max_work_item_sizes_i[0],
|
|
_max_work_item_sizes_i[1],
|
|
_max_work_item_sizes_i[2]);
|
|
else
|
|
{
|
|
return _max_work_item_sizes_i;
|
|
}
|
|
}
|
|
bool get_host_unified_memory() const { return _host_unified_memory; }
|
|
int get_major_version() const { return _major; }
|
|
int get_minor_version() const { return _minor; }
|
|
int get_integrated() const { return _integrated; }
|
|
int get_max_clock_frequency() const { return _frequency; }
|
|
int get_max_compute_units() const { return _max_compute_units; }
|
|
int get_max_work_group_size() const { return _max_work_group_size; }
|
|
int get_max_sub_group_size() const { return _max_sub_group_size; }
|
|
int get_max_work_items_per_compute_unit() const
|
|
{
|
|
return _max_work_items_per_compute_unit;
|
|
}
|
|
int get_max_register_size_per_work_group() const
|
|
{
|
|
return _max_register_size_per_work_group;
|
|
}
|
|
template <typename NDRangeSizeTy = size_t *,
|
|
std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
|
|
std::is_same_v<NDRangeSizeTy, int *>,
|
|
int> = 0>
|
|
auto get_max_nd_range_size() const
|
|
{
|
|
if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
|
|
return _max_nd_range_size;
|
|
else
|
|
return _max_nd_range_size_i;
|
|
}
|
|
template <typename NDRangeSizeTy = size_t *,
|
|
std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
|
|
std::is_same_v<NDRangeSizeTy, int *>,
|
|
int> = 0>
|
|
auto get_max_nd_range_size()
|
|
{
|
|
if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
|
|
return _max_nd_range_size;
|
|
else
|
|
return _max_nd_range_size_i;
|
|
}
|
|
size_t get_global_mem_size() const { return _global_mem_size; }
|
|
size_t get_local_mem_size() const { return _local_mem_size; }
|
|
size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
|
|
/// Returns the maximum clock rate of device's global memory in kHz. If
|
|
/// compiler does not support this API then returns default value 3200000 kHz.
|
|
unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
|
|
/// Returns the maximum bus width between device and memory in bits. If
|
|
/// compiler does not support this API then returns default value 64 bits.
|
|
unsigned int get_memory_bus_width() const { return _memory_bus_width; }
|
|
uint32_t get_device_id() const { return _device_id; }
|
|
std::array<unsigned char, 16> get_uuid() const { return _uuid; }
|
|
/// Returns global memory cache size in bytes.
|
|
unsigned int get_global_mem_cache_size() const
|
|
{
|
|
return _global_mem_cache_size;
|
|
}
|
|
|
|
// set interface
|
|
void set_name(const char *name)
|
|
{
|
|
size_t length = strlen(name);
|
|
if (length < 256)
|
|
{
|
|
std::memcpy(_name, name, length + 1);
|
|
}
|
|
else
|
|
{
|
|
std::memcpy(_name, name, 255);
|
|
_name[255] = '\0';
|
|
}
|
|
}
|
|
void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes)
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
_max_work_item_sizes_i[i] = max_work_item_sizes[i];
|
|
}
|
|
[[deprecated]] void
|
|
set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes)
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
_max_work_item_sizes_i[i] = max_work_item_sizes[i];
|
|
}
|
|
}
|
|
void set_host_unified_memory(bool host_unified_memory)
|
|
{
|
|
_host_unified_memory = host_unified_memory;
|
|
}
|
|
void set_major_version(int major) { _major = major; }
|
|
void set_minor_version(int minor) { _minor = minor; }
|
|
void set_integrated(int integrated) { _integrated = integrated; }
|
|
void set_max_clock_frequency(int frequency) { _frequency = frequency; }
|
|
void set_max_compute_units(int max_compute_units)
|
|
{
|
|
_max_compute_units = max_compute_units;
|
|
}
|
|
void set_global_mem_size(size_t global_mem_size)
|
|
{
|
|
_global_mem_size = global_mem_size;
|
|
}
|
|
void set_local_mem_size(size_t local_mem_size)
|
|
{
|
|
_local_mem_size = local_mem_size;
|
|
}
|
|
void set_max_mem_alloc_size(size_t max_mem_alloc_size)
|
|
{
|
|
_max_mem_alloc_size = max_mem_alloc_size;
|
|
}
|
|
void set_max_work_group_size(int max_work_group_size)
|
|
{
|
|
_max_work_group_size = max_work_group_size;
|
|
}
|
|
void set_max_sub_group_size(int max_sub_group_size)
|
|
{
|
|
_max_sub_group_size = max_sub_group_size;
|
|
}
|
|
void
|
|
set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit)
|
|
{
|
|
_max_work_items_per_compute_unit = max_work_items_per_compute_unit;
|
|
}
|
|
void set_max_nd_range_size(int max_nd_range_size[])
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
_max_nd_range_size[i] = max_nd_range_size[i];
|
|
_max_nd_range_size_i[i] = max_nd_range_size[i];
|
|
}
|
|
}
|
|
void set_memory_clock_rate(unsigned int memory_clock_rate)
|
|
{
|
|
_memory_clock_rate = memory_clock_rate;
|
|
}
|
|
void set_memory_bus_width(unsigned int memory_bus_width)
|
|
{
|
|
_memory_bus_width = memory_bus_width;
|
|
}
|
|
void
|
|
set_max_register_size_per_work_group(int max_register_size_per_work_group)
|
|
{
|
|
_max_register_size_per_work_group = max_register_size_per_work_group;
|
|
}
|
|
void set_device_id(uint32_t device_id)
|
|
{
|
|
_device_id = device_id;
|
|
}
|
|
void set_uuid(std::array<unsigned char, 16> uuid)
|
|
{
|
|
_uuid = std::move(uuid);
|
|
}
|
|
void set_global_mem_cache_size(unsigned int global_mem_cache_size)
|
|
{
|
|
_global_mem_cache_size = global_mem_cache_size;
|
|
}
|
|
|
|
private:
|
|
char _name[256];
|
|
int _max_work_item_sizes_i[3];
|
|
bool _host_unified_memory = false;
|
|
int _major;
|
|
int _minor;
|
|
int _integrated = 0;
|
|
int _frequency;
|
|
// Set estimated value 3200000 kHz as default value.
|
|
unsigned int _memory_clock_rate = 3200000;
|
|
// Set estimated value 64 bits as default value.
|
|
unsigned int _memory_bus_width = 64;
|
|
unsigned int _global_mem_cache_size;
|
|
int _max_compute_units;
|
|
int _max_work_group_size;
|
|
int _max_sub_group_size;
|
|
int _max_work_items_per_compute_unit;
|
|
int _max_register_size_per_work_group;
|
|
size_t _global_mem_size;
|
|
size_t _local_mem_size;
|
|
size_t _max_mem_alloc_size;
|
|
size_t _max_nd_range_size[3];
|
|
int _max_nd_range_size_i[3];
|
|
uint32_t _device_id;
|
|
std::array<unsigned char, 16> _uuid;
|
|
};
|
|
|
|
static int get_major_version(const sycl::device &dev)
|
|
{
|
|
int major, minor;
|
|
detail::get_version(dev, major, minor);
|
|
return major;
|
|
}
|
|
|
|
static int get_minor_version(const sycl::device &dev)
|
|
{
|
|
int major, minor;
|
|
detail::get_version(dev, major, minor);
|
|
return minor;
|
|
}
|
|
|
|
static void get_device_info(device_info &out, const sycl::device &dev)
|
|
{
|
|
device_info prop;
|
|
prop.set_name(dev.get_info<sycl::info::device::name>().c_str());
|
|
|
|
int major, minor;
|
|
detail::get_version(dev, major, minor);
|
|
prop.set_major_version(major);
|
|
prop.set_minor_version(minor);
|
|
|
|
prop.set_max_work_item_sizes(
|
|
#if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
|
|
// oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes
|
|
// is an enum class element
|
|
dev.get_info<sycl::info::device::max_work_item_sizes>());
|
|
#else
|
|
// SYCL 2020-conformant code, max_work_item_sizes is a struct templated by
|
|
// an int
|
|
dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
|
|
#endif
|
|
prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));
|
|
|
|
prop.set_max_clock_frequency(
|
|
dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);
|
|
|
|
prop.set_max_compute_units(
|
|
dev.get_info<sycl::info::device::max_compute_units>());
|
|
prop.set_max_work_group_size(
|
|
dev.get_info<sycl::info::device::max_work_group_size>());
|
|
prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
|
|
prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
|
|
prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
|
|
|
|
#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
|
|
if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
|
|
{
|
|
unsigned int tmp =
|
|
dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
|
|
if (tmp != 0)
|
|
prop.set_memory_clock_rate(1000 * tmp);
|
|
}
|
|
if (dev.has(sycl::aspect::ext_intel_memory_bus_width))
|
|
{
|
|
prop.set_memory_bus_width(
|
|
dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
|
|
}
|
|
if (dev.has(sycl::aspect::ext_intel_device_id))
|
|
{
|
|
prop.set_device_id(
|
|
dev.get_info<sycl::ext::intel::info::device::device_id>());
|
|
}
|
|
if (dev.has(sycl::aspect::ext_intel_device_info_uuid))
|
|
{
|
|
prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
|
|
}
|
|
#elif defined(_MSC_VER) && !defined(__clang__)
|
|
#pragma message("get_device_info: querying memory_clock_rate and \
|
|
memory_bus_width are not supported by the compiler used. \
|
|
Use 3200000 kHz as memory_clock_rate default value. \
|
|
Use 64 bits as memory_bus_width default value.")
|
|
#else
|
|
#warning "get_device_info: querying memory_clock_rate and \
|
|
memory_bus_width are not supported by the compiler used. \
|
|
Use 3200000 kHz as memory_clock_rate default value. \
|
|
Use 64 bits as memory_bus_width default value."
|
|
#endif
|
|
|
|
size_t max_sub_group_size = 1;
|
|
std::vector<size_t> sub_group_sizes =
|
|
dev.get_info<sycl::info::device::sub_group_sizes>();
|
|
|
|
for (const auto &sub_group_size : sub_group_sizes)
|
|
{
|
|
if (max_sub_group_size < sub_group_size)
|
|
max_sub_group_size = sub_group_size;
|
|
}
|
|
|
|
prop.set_max_sub_group_size(max_sub_group_size);
|
|
|
|
prop.set_max_work_items_per_compute_unit(
|
|
dev.get_info<sycl::info::device::max_work_group_size>());
|
|
int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
|
|
prop.set_max_nd_range_size(max_nd_range_size);
|
|
|
|
// Estimates max register size per work group, feel free to update the value
|
|
// according to device properties.
|
|
prop.set_max_register_size_per_work_group(65536);
|
|
|
|
prop.set_global_mem_cache_size(
|
|
dev.get_info<sycl::info::device::global_mem_cache_size>());
|
|
out = prop;
|
|
}
|
|
|
|
/// dpct device extension
|
|
class device_ext : public sycl::device
|
|
{
|
|
typedef std::mutex mutex_type;
|
|
|
|
public:
|
|
device_ext() : sycl::device(), _ctx(*this) {}
|
|
~device_ext()
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
clear_queues();
|
|
}
|
|
device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this)
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
init_queues();
|
|
}
|
|
|
|
int is_native_atomic_supported() { return 0; }
|
|
int get_major_version() const
|
|
{
|
|
return dpct::get_major_version(*this);
|
|
}
|
|
|
|
int get_minor_version() const
|
|
{
|
|
return dpct::get_minor_version(*this);
|
|
}
|
|
|
|
int get_max_compute_units() const
|
|
{
|
|
return get_device_info().get_max_compute_units();
|
|
}
|
|
|
|
/// Return the maximum clock frequency of this device in KHz.
|
|
int get_max_clock_frequency() const
|
|
{
|
|
return get_device_info().get_max_clock_frequency();
|
|
}
|
|
|
|
int get_integrated() const { return get_device_info().get_integrated(); }
|
|
|
|
int get_max_sub_group_size() const
|
|
{
|
|
return get_device_info().get_max_sub_group_size();
|
|
}
|
|
|
|
int get_max_register_size_per_work_group() const
|
|
{
|
|
return get_device_info().get_max_register_size_per_work_group();
|
|
}
|
|
|
|
int get_max_work_group_size() const
|
|
{
|
|
return get_device_info().get_max_work_group_size();
|
|
}
|
|
|
|
int get_mem_base_addr_align() const
|
|
{
|
|
return get_info<sycl::info::device::mem_base_addr_align>();
|
|
}
|
|
|
|
size_t get_global_mem_size() const
|
|
{
|
|
return get_device_info().get_global_mem_size();
|
|
}
|
|
|
|
size_t get_max_mem_alloc_size() const
|
|
{
|
|
return get_device_info().get_max_mem_alloc_size();
|
|
}
|
|
|
|
/// Get the number of bytes of free and total memory on the SYCL device.
|
|
/// \param [out] free_memory The number of bytes of free memory on the SYCL device.
|
|
/// \param [out] total_memory The number of bytes of total memory on the SYCL device.
|
|
void get_memory_info(size_t &free_memory, size_t &total_memory)
|
|
{
|
|
#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
|
|
if (!has(sycl::aspect::ext_intel_free_memory))
|
|
{
|
|
std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl;
|
|
free_memory = 0;
|
|
}
|
|
else
|
|
{
|
|
free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
|
|
}
|
|
#else
|
|
std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl;
|
|
free_memory = 0;
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#pragma message("Querying the number of bytes of free memory is not supported")
|
|
#else
|
|
#warning "Querying the number of bytes of free memory is not supported"
|
|
#endif
|
|
#endif
|
|
total_memory = get_device_info().get_global_mem_size();
|
|
}
|
|
|
|
void get_device_info(device_info &out) const
|
|
{
|
|
dpct::get_device_info(out, *this);
|
|
}
|
|
|
|
device_info get_device_info() const
|
|
{
|
|
device_info prop;
|
|
dpct::get_device_info(prop, *this);
|
|
return prop;
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
clear_queues();
|
|
init_queues();
|
|
}
|
|
|
|
sycl::queue &in_order_queue() { return *_q_in_order; }
|
|
|
|
sycl::queue &out_of_order_queue() { return *_q_out_of_order; }
|
|
|
|
sycl::queue &default_queue()
|
|
{
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
return out_of_order_queue();
|
|
#else
|
|
return in_order_queue();
|
|
#endif // DPCT_USM_LEVEL_NONE
|
|
}
|
|
|
|
void queues_wait_and_throw()
|
|
{
|
|
std::unique_lock<mutex_type> lock(m_mutex);
|
|
std::vector<std::shared_ptr<sycl::queue>> current_queues(
|
|
_queues);
|
|
lock.unlock();
|
|
for (const auto &q : current_queues)
|
|
{
|
|
q->wait_and_throw();
|
|
}
|
|
// Guard the destruct of current_queues to make sure the ref count is safe.
|
|
lock.lock();
|
|
}
|
|
|
|
sycl::queue *create_queue(bool enable_exception_handler = false)
|
|
{
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
return create_out_of_order_queue(enable_exception_handler);
|
|
#else
|
|
return create_in_order_queue(enable_exception_handler);
|
|
#endif // DPCT_USM_LEVEL_NONE
|
|
}
|
|
|
|
sycl::queue *create_in_order_queue(bool enable_exception_handler = false)
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
return create_queue_impl(enable_exception_handler,
|
|
sycl::property::queue::in_order());
|
|
}
|
|
|
|
sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false)
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
return create_queue_impl(enable_exception_handler);
|
|
}
|
|
|
|
void destroy_queue(sycl::queue *&queue)
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
_queues.erase(std::remove_if(_queues.begin(), _queues.end(),
|
|
[=](const std::shared_ptr<sycl::queue> &q) -> bool
|
|
{
|
|
return q.get() == queue;
|
|
}),
|
|
_queues.end());
|
|
queue = nullptr;
|
|
}
|
|
void set_saved_queue(sycl::queue *q)
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
_saved_queue = q;
|
|
}
|
|
sycl::queue *get_saved_queue() const
|
|
{
|
|
std::lock_guard<mutex_type> lock(m_mutex);
|
|
return _saved_queue;
|
|
}
|
|
sycl::context get_context() const { return _ctx; }
|
|
|
|
private:
|
|
void clear_queues()
|
|
{
|
|
_queues.clear();
|
|
_q_in_order = _q_out_of_order = _saved_queue = nullptr;
|
|
}
|
|
|
|
void init_queues()
|
|
{
|
|
_q_in_order = create_queue_impl(true, sycl::property::queue::in_order());
|
|
_q_out_of_order = create_queue_impl(true);
|
|
_saved_queue = &default_queue();
|
|
}
|
|
|
|
/// Caller should acquire resource \p m_mutex before calling this function.
|
|
template <class... Properties>
|
|
sycl::queue *create_queue_impl(bool enable_exception_handler,
|
|
Properties... properties)
|
|
{
|
|
sycl::async_handler eh = {};
|
|
if (enable_exception_handler)
|
|
{
|
|
eh = exception_handler;
|
|
}
|
|
_queues.push_back(std::make_shared<sycl::queue>(
|
|
_ctx, *this, eh,
|
|
sycl::property_list(
|
|
#ifdef DPCT_PROFILING_ENABLED
|
|
sycl::property::queue::enable_profiling(),
|
|
#endif
|
|
properties...)));
|
|
|
|
return _queues.back().get();
|
|
}
|
|
|
|
void get_version(int &major, int &minor) const
|
|
{
|
|
detail::get_version(*this, major, minor);
|
|
}
|
|
sycl::queue *_q_in_order, *_q_out_of_order;
|
|
sycl::queue *_saved_queue;
|
|
sycl::context _ctx;
|
|
std::vector<std::shared_ptr<sycl::queue>> _queues;
|
|
mutable mutex_type m_mutex;
|
|
};
|
|
|
|
/// device manager
|
|
class dev_mgr
|
|
{
|
|
public:
|
|
device_ext ¤t_device()
|
|
{
|
|
unsigned int dev_id = current_device_id();
|
|
check_id(dev_id);
|
|
return *_devs[dev_id];
|
|
}
|
|
device_ext &cpu_device() const
|
|
{
|
|
std::lock_guard<std::recursive_mutex> lock(m_mutex);
|
|
if (_cpu_device == -1)
|
|
{
|
|
throw std::runtime_error("no valid cpu device");
|
|
}
|
|
else
|
|
{
|
|
return *_devs[_cpu_device];
|
|
}
|
|
}
|
|
device_ext &get_device(unsigned int id) const
|
|
{
|
|
std::lock_guard<std::recursive_mutex> lock(m_mutex);
|
|
check_id(id);
|
|
return *_devs[id];
|
|
}
|
|
unsigned int current_device_id() const
|
|
{
|
|
std::lock_guard<std::recursive_mutex> lock(m_mutex);
|
|
auto it = _thread2dev_map.find(get_tid());
|
|
if (it != _thread2dev_map.end())
|
|
return it->second;
|
|
return DEFAULT_DEVICE_ID;
|
|
}
|
|
|
|
/// Select device with a device ID.
|
|
/// \param [in] id The id of the device which can
|
|
/// be obtained through get_device_id(const sycl::device).
|
|
void select_device(unsigned int id)
|
|
{
|
|
std::lock_guard<std::recursive_mutex> lock(m_mutex);
|
|
check_id(id);
|
|
_thread2dev_map[get_tid()] = id;
|
|
}
|
|
unsigned int device_count() { return _devs.size(); }
|
|
|
|
unsigned int get_device_id(const sycl::device &dev)
|
|
{
|
|
unsigned int id = 0;
|
|
for (auto dev_item : _devs)
|
|
{
|
|
if (*dev_item == dev)
|
|
{
|
|
break;
|
|
}
|
|
id++;
|
|
}
|
|
return id;
|
|
}
|
|
|
|
template <class DeviceSelector>
|
|
std::enable_if_t<
|
|
std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
|
|
select_device(const DeviceSelector &selector = sycl::gpu_selector_v)
|
|
{
|
|
sycl::device selected_device = sycl::device(selector);
|
|
unsigned int selected_device_id = get_device_id(selected_device);
|
|
select_device(selected_device_id);
|
|
}
|
|
|
|
/// Returns the instance of device manager singleton.
|
|
static dev_mgr &instance()
|
|
{
|
|
static dev_mgr d_m;
|
|
return d_m;
|
|
}
|
|
dev_mgr(const dev_mgr &) = delete;
|
|
dev_mgr &operator=(const dev_mgr &) = delete;
|
|
dev_mgr(dev_mgr &&) = delete;
|
|
dev_mgr &operator=(dev_mgr &&) = delete;
|
|
|
|
private:
|
|
mutable std::recursive_mutex m_mutex;
|
|
dev_mgr()
|
|
{
|
|
sycl::device default_device =
|
|
sycl::device(sycl::default_selector_v);
|
|
_devs.push_back(std::make_shared<device_ext>(default_device));
|
|
|
|
std::vector<sycl::device> sycl_all_devs =
|
|
sycl::device::get_devices(sycl::info::device_type::all);
|
|
// Collect other devices except for the default device.
|
|
if (default_device.is_cpu())
|
|
_cpu_device = 0;
|
|
for (auto &dev : sycl_all_devs)
|
|
{
|
|
if (dev == default_device)
|
|
{
|
|
continue;
|
|
}
|
|
_devs.push_back(std::make_shared<device_ext>(dev));
|
|
if (_cpu_device == -1 && dev.is_cpu())
|
|
{
|
|
_cpu_device = _devs.size() - 1;
|
|
}
|
|
}
|
|
}
|
|
void check_id(unsigned int id) const
|
|
{
|
|
if (id >= _devs.size())
|
|
{
|
|
throw std::runtime_error("invalid device id");
|
|
}
|
|
}
|
|
std::vector<std::shared_ptr<device_ext>> _devs;
|
|
/// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
|
|
/// thread id in _thread2dev_map, which means default device should be used
|
|
/// for the current thread.
|
|
const unsigned int DEFAULT_DEVICE_ID = 0;
|
|
/// thread-id to device-id map.
|
|
std::map<unsigned int, unsigned int> _thread2dev_map;
|
|
int _cpu_device = -1;
|
|
};
|
|
|
|
static inline sycl::queue &get_default_queue()
|
|
{
|
|
return dev_mgr::instance().current_device().default_queue();
|
|
}
|
|
|
|
namespace detail
|
|
{
|
|
enum class pointer_access_attribute
|
|
{
|
|
host_only = 0,
|
|
device_only,
|
|
host_device,
|
|
end
|
|
};
|
|
|
|
static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
|
|
const void *ptr)
|
|
{
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
return mem_mgr::instance().is_device_ptr(ptr)
|
|
? pointer_access_attribute::device_only
|
|
: pointer_access_attribute::host_only;
|
|
#else
|
|
switch (sycl::get_pointer_type(ptr, q.get_context()))
|
|
{
|
|
case sycl::usm::alloc::unknown:
|
|
return pointer_access_attribute::host_only;
|
|
case sycl::usm::alloc::device:
|
|
return pointer_access_attribute::device_only;
|
|
case sycl::usm::alloc::shared:
|
|
case sycl::usm::alloc::host:
|
|
return pointer_access_attribute::host_device;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <typename ArgT>
|
|
inline constexpr std::uint64_t get_type_combination_id(ArgT Val)
|
|
{
|
|
static_assert((unsigned char)library_data_t::library_data_t_size <=
|
|
std::numeric_limits<unsigned char>::max() &&
|
|
"library_data_t size exceeds limit.");
|
|
static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
|
|
return (std::uint64_t)Val;
|
|
}
|
|
|
|
template <typename FirstT, typename... RestT>
|
|
inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
|
|
RestT... RestVal)
|
|
{
|
|
static_assert((std::uint8_t)library_data_t::library_data_t_size <=
|
|
std::numeric_limits<unsigned char>::max() &&
|
|
"library_data_t size exceeds limit.");
|
|
static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
|
|
static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
|
|
return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
|
|
}
|
|
|
|
class mem_mgr
|
|
{
|
|
mem_mgr()
|
|
{
|
|
// Reserved address space, no real memory allocation happens here.
|
|
#if defined(__linux__)
|
|
mapped_address_space =
|
|
(byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
#elif defined(_WIN64)
|
|
mapped_address_space = (byte_t *)VirtualAlloc(
|
|
NULL, // NULL specified as the base address parameter
|
|
mapped_region_size, // Size of allocation
|
|
MEM_RESERVE, // Allocate reserved pages
|
|
PAGE_NOACCESS); // Protection = no access
|
|
#else
|
|
#error "Only support Windows and Linux."
|
|
#endif
|
|
next_free = mapped_address_space;
|
|
};
|
|
|
|
public:
|
|
using buffer_id_t = int;
|
|
|
|
struct allocation
|
|
{
|
|
buffer_t buffer;
|
|
byte_t *alloc_ptr;
|
|
size_t size;
|
|
};
|
|
|
|
~mem_mgr()
|
|
{
|
|
#if defined(__linux__)
|
|
munmap(mapped_address_space, mapped_region_size);
|
|
#elif defined(_WIN64)
|
|
VirtualFree(mapped_address_space, 0, MEM_RELEASE);
|
|
#else
|
|
#error "Only support Windows and Linux."
|
|
#endif
|
|
};
|
|
|
|
mem_mgr(const mem_mgr &) = delete;
|
|
mem_mgr &operator=(const mem_mgr &) = delete;
|
|
mem_mgr(mem_mgr &&) = delete;
|
|
mem_mgr &operator=(mem_mgr &&) = delete;
|
|
|
|
/// Allocate
|
|
void *mem_alloc(size_t size)
|
|
{
|
|
if (!size)
|
|
return nullptr;
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
if (next_free + size > mapped_address_space + mapped_region_size)
|
|
{
|
|
throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool");
|
|
}
|
|
// Allocation
|
|
sycl::range<1> r(size);
|
|
buffer_t buf(r);
|
|
allocation A{buf, next_free, size};
|
|
// Map allocation to device pointer
|
|
void *result = next_free;
|
|
m_map.emplace(next_free + size, A);
|
|
// Update pointer to the next free space.
|
|
next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Deallocate
|
|
void mem_free(const void *ptr)
|
|
{
|
|
if (!ptr)
|
|
return;
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
auto it = get_map_iterator(ptr);
|
|
m_map.erase(it);
|
|
}
|
|
|
|
/// map: device pointer -> allocation(buffer, alloc_ptr, size)
|
|
allocation translate_ptr(const void *ptr)
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
auto it = get_map_iterator(ptr);
|
|
return it->second;
|
|
}
|
|
|
|
/// Check if the pointer represents device pointer or not.
|
|
bool is_device_ptr(const void *ptr) const
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
return (mapped_address_space <= ptr) &&
|
|
(ptr < mapped_address_space + mapped_region_size);
|
|
}
|
|
|
|
/// Returns the instance of memory manager singleton.
|
|
static mem_mgr &instance()
|
|
{
|
|
static mem_mgr m;
|
|
return m;
|
|
}
|
|
|
|
private:
|
|
std::map<byte_t *, allocation> m_map;
|
|
mutable std::mutex m_mutex;
|
|
byte_t *mapped_address_space;
|
|
byte_t *next_free;
|
|
const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024;
|
|
const size_t alignment = 256;
|
|
/// This padding may be defined to some positive value to debug
|
|
/// out of bound accesses.
|
|
const size_t extra_padding = 0;
|
|
|
|
std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
|
|
{
|
|
auto it = m_map.upper_bound((byte_t *)ptr);
|
|
if (it == m_map.end())
|
|
{
|
|
// Not a virtual pointer.
|
|
throw std::runtime_error("can not get buffer from non-virtual pointer");
|
|
}
|
|
const allocation &alloc = it->second;
|
|
if (ptr < alloc.alloc_ptr)
|
|
{
|
|
// Out of bound.
|
|
// This may happen if there's a gap between allocations due to alignment
|
|
// or extra padding and pointer points to this gap.
|
|
throw std::runtime_error("invalid virtual pointer");
|
|
}
|
|
return it;
|
|
}
|
|
};
|
|
|
|
template <class T, memory_region Memory, size_t Dimension>
|
|
class accessor;
|
|
template <memory_region Memory, class T = byte_t>
|
|
class memory_traits
|
|
{
|
|
public:
|
|
static constexpr sycl::access::target target =
|
|
sycl::access::target::device;
|
|
static constexpr sycl::access_mode mode =
|
|
(Memory == constant) ? sycl::access_mode::read
|
|
: sycl::access_mode::read_write;
|
|
static constexpr size_t type_size = sizeof(T);
|
|
using element_t =
|
|
typename std::conditional<Memory == constant, const T, T>::type;
|
|
using value_t = typename std::remove_cv<T>::type;
|
|
template <size_t Dimension = 1>
|
|
using accessor_t = typename std::conditional<
|
|
Memory == local, sycl::local_accessor<value_t, Dimension>,
|
|
sycl::accessor<T, Dimension, mode, target>>::type;
|
|
using pointer_t = T *;
|
|
};
|
|
|
|
static inline void *dpct_malloc(size_t size, sycl::queue &q)
|
|
{
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
return mem_mgr::instance().mem_alloc(size * sizeof(byte_t));
|
|
#else
|
|
return sycl::malloc_device(size, q.get_device(), q.get_context());
|
|
#endif // DPCT_USM_LEVEL_NONE
|
|
}
|
|
|
|
#define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
|
|
static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z,
|
|
sycl::queue &q)
|
|
{
|
|
pitch = PITCH_DEFAULT_ALIGN(x);
|
|
return dpct_malloc(pitch * y * z, q);
|
|
}
|
|
|
|
/**
|
|
* @brief Sets \p value to the first \p size elements starting from \p dev_ptr in \p q.
|
|
* @tparam valueT The type of the element to be set.
|
|
* @param [in] q The queue in which the operation is done.
|
|
* @param [in] dev_ptr Pointer to the virtual device memory address.
|
|
* @param [in] value The value to be set.
|
|
* @param [in] size Number of elements to be set to the value.
|
|
* @return An event representing the memset operation.
|
|
*/
|
|
template <typename valueT>
|
|
static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
|
|
valueT value, size_t size)
|
|
{
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
auto &mm = mem_mgr::instance();
|
|
assert(mm.is_device_ptr(dev_ptr));
|
|
auto alloc = mm.translate_ptr(dev_ptr);
|
|
size_t offset = (valueT *)dev_ptr - (valueT *)alloc.alloc_ptr;
|
|
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
auto r = sycl::range<1>(size);
|
|
auto o = sycl::id<1>(offset);
|
|
auto new_buffer = alloc.buffer.reinterpret<valueT>(
|
|
sycl::range<1>(alloc.size / sizeof(valueT)));
|
|
sycl::accessor<valueT, 1, sycl::access_mode::write,
|
|
sycl::access::target::device>
|
|
acc(new_buffer, cgh, r, o);
|
|
cgh.fill(acc, value); });
|
|
#else
|
|
return q.fill(dev_ptr, value, size);
|
|
#endif // DPCT_USM_LEVEL_NONE
|
|
}
|
|
|
|
/**
|
|
* @brief Sets \p value to the 3D memory region pointed by \p data in \p q.
|
|
* @tparam valueT The type of the element to be set.
|
|
* @param [in] q The queue in which the operation is done.
|
|
* @param [in] data Pointer to the pitched device memory region.
|
|
* @param [in] value The value to be set.
|
|
* @param [in] size 3D memory region by number of elements.
|
|
* @return An event list representing the memset operations.
|
|
*/
|
|
template <typename valueT>
|
|
static inline std::vector<sycl::event>
|
|
dpct_memset(sycl::queue &q, pitched_data data, valueT value,
|
|
sycl::range<3> size)
|
|
{
|
|
std::vector<sycl::event> event_list;
|
|
size_t slice = data.get_pitch() * data.get_y();
|
|
unsigned char *data_surface = (unsigned char *)data.get_data_ptr();
|
|
for (size_t z = 0; z < size.get(2); ++z)
|
|
{
|
|
unsigned char *data_ptr = data_surface;
|
|
for (size_t y = 0; y < size.get(1); ++y)
|
|
{
|
|
event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0)));
|
|
data_ptr += data.get_pitch();
|
|
}
|
|
data_surface += slice;
|
|
}
|
|
return event_list;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets \p val to the pitched 2D memory region pointed by \p ptr in \p q.
|
|
* @tparam valueT The type of the element to be set.
|
|
* @param [in] q The queue in which the operation is done.
|
|
* @param [in] ptr Pointer to the virtual device memory.
|
|
* @param [in] pitch The pitch size by number of elements, including padding.
|
|
* @param [in] val The value to be set.
|
|
* @param [in] x The width of memory region by number of elements.
|
|
* @param [in] y The height of memory region by number of elements.
|
|
* @return An event list representing the memset operations.
|
|
*/
|
|
template <typename valueT>
|
|
static inline std::vector<sycl::event>
|
|
dpct_memset(sycl::queue &q, void *ptr, size_t pitch, valueT val, size_t x,
|
|
size_t y)
|
|
{
|
|
return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val,
|
|
sycl::range<3>(x, y, 1));
|
|
}
|
|
|
|
static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr,
|
|
const void *from_ptr,
|
|
memcpy_direction dir)
|
|
{
|
|
switch (dir)
|
|
{
|
|
case memcpy_direction::host_to_host:
|
|
case memcpy_direction::host_to_device:
|
|
case memcpy_direction::device_to_host:
|
|
case memcpy_direction::device_to_device:
|
|
return dir;
|
|
case memcpy_direction::automatic:
|
|
{
|
|
// table[to_attribute][from_attribute]
|
|
static const memcpy_direction
|
|
direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
|
|
[static_cast<unsigned>(pointer_access_attribute::end)] =
|
|
{{memcpy_direction::host_to_host,
|
|
memcpy_direction::device_to_host,
|
|
memcpy_direction::host_to_host},
|
|
{memcpy_direction::host_to_device,
|
|
memcpy_direction::device_to_device,
|
|
memcpy_direction::device_to_device},
|
|
{memcpy_direction::host_to_host,
|
|
memcpy_direction::device_to_device,
|
|
memcpy_direction::device_to_device}};
|
|
return direction_table[static_cast<unsigned>(get_pointer_attribute(
|
|
q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
|
|
}
|
|
default:
|
|
throw std::runtime_error("dpct_memcpy: invalid direction value");
|
|
}
|
|
}
|
|
|
|
static sycl::event
|
|
dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
|
|
memcpy_direction direction,
|
|
const std::vector<sycl::event> &dep_events = {})
|
|
{
|
|
if (!size)
|
|
return sycl::event{};
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
auto &mm = mem_mgr::instance();
|
|
auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
|
|
|
|
switch (real_direction)
|
|
{
|
|
case host_to_host:
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
|
|
case host_to_device:
|
|
{
|
|
auto alloc = mm.translate_ptr(to_ptr);
|
|
size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto r = sycl::range<1>(size);
|
|
auto o = sycl::id<1>(offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::write,
|
|
sycl::access::target::device>
|
|
acc(alloc.buffer, cgh, r, o);
|
|
cgh.copy(from_ptr, acc); });
|
|
}
|
|
case device_to_host:
|
|
{
|
|
auto alloc = mm.translate_ptr(from_ptr);
|
|
size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto r = sycl::range<1>(size);
|
|
auto o = sycl::id<1>(offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::read,
|
|
sycl::access::target::device>
|
|
acc(alloc.buffer, cgh, r, o);
|
|
cgh.copy(acc, to_ptr); });
|
|
}
|
|
case device_to_device:
|
|
{
|
|
auto to_alloc = mm.translate_ptr(to_ptr);
|
|
auto from_alloc = mm.translate_ptr(from_ptr);
|
|
size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
|
|
size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto r = sycl::range<1>(size);
|
|
auto to_o = sycl::id<1>(to_offset);
|
|
auto from_o = sycl::id<1>(from_offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::write,
|
|
sycl::access::target::device>
|
|
to_acc(to_alloc.buffer, cgh, r, to_o);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::read,
|
|
sycl::access::target::device>
|
|
from_acc(from_alloc.buffer, cgh, r, from_o);
|
|
cgh.copy(from_acc, to_acc); });
|
|
}
|
|
default:
|
|
throw std::runtime_error("dpct_memcpy: invalid direction value");
|
|
}
|
|
#else
|
|
return q.memcpy(to_ptr, from_ptr, size, dep_events);
|
|
GGML_UNUSED(direction);
|
|
#endif // DPCT_USM_LEVEL_NONE
|
|
}
|
|
|
|
// Get actual copy range and make sure it will not exceed range.
|
|
static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
|
|
size_t pitch)
|
|
{
|
|
return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
|
|
}
|
|
|
|
static inline size_t get_offset(sycl::id<3> id, size_t slice,
|
|
size_t pitch)
|
|
{
|
|
return slice * id.get(2) + pitch * id.get(1) + id.get(0);
|
|
}
|
|
|
|
/// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
|
|
/// and \p from_range to another specified by \p to_ptr and \p to_range.
|
|
static inline std::vector<sycl::event>
|
|
dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
|
|
sycl::range<3> to_range, sycl::range<3> from_range,
|
|
sycl::id<3> to_id, sycl::id<3> from_id,
|
|
sycl::range<3> size, memcpy_direction direction,
|
|
const std::vector<sycl::event> &dep_events = {})
|
|
{
|
|
// RAII for host pointer
|
|
class host_buffer
|
|
{
|
|
void *_buf;
|
|
size_t _size;
|
|
sycl::queue &_q;
|
|
const std::vector<sycl::event> &_deps; // free operation depends
|
|
|
|
public:
|
|
host_buffer(size_t size, sycl::queue &q,
|
|
const std::vector<sycl::event> &deps)
|
|
: _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
|
|
void *get_ptr() const { return _buf; }
|
|
size_t get_size() const { return _size; }
|
|
~host_buffer()
|
|
{
|
|
if (_buf)
|
|
{
|
|
_q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(_deps);
|
|
cgh.host_task([buf = _buf] { std::free(buf); }); });
|
|
}
|
|
}
|
|
};
|
|
std::vector<sycl::event> event_list;
|
|
|
|
size_t to_slice = to_range.get(1) * to_range.get(0),
|
|
from_slice = from_range.get(1) * from_range.get(0);
|
|
unsigned char *to_surface =
|
|
(unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
|
|
const unsigned char *from_surface =
|
|
(const unsigned char *)from_ptr +
|
|
get_offset(from_id, from_slice, from_range.get(0));
|
|
|
|
if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
|
|
{
|
|
return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
|
|
direction, dep_events)};
|
|
}
|
|
direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
|
|
size_t size_slice = size.get(1) * size.get(0);
|
|
switch (direction)
|
|
{
|
|
case host_to_host:
|
|
for (size_t z = 0; z < size.get(2); ++z)
|
|
{
|
|
unsigned char *to_ptr = to_surface;
|
|
const unsigned char *from_ptr = from_surface;
|
|
if (to_range.get(0) == from_range.get(0) &&
|
|
to_range.get(0) == size.get(0))
|
|
{
|
|
event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
|
|
direction, dep_events));
|
|
}
|
|
else
|
|
{
|
|
for (size_t y = 0; y < size.get(1); ++y)
|
|
{
|
|
event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
|
|
direction, dep_events));
|
|
to_ptr += to_range.get(0);
|
|
from_ptr += from_range.get(0);
|
|
}
|
|
}
|
|
to_surface += to_slice;
|
|
from_surface += from_slice;
|
|
}
|
|
break;
|
|
case host_to_device:
|
|
{
|
|
host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
|
|
event_list);
|
|
std::vector<sycl::event> host_events;
|
|
if (to_slice == size_slice)
|
|
{
|
|
// Copy host data to a temp host buffer with the shape of target.
|
|
host_events =
|
|
dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
|
|
sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
|
|
host_to_host, dep_events);
|
|
}
|
|
else
|
|
{
|
|
// Copy host data to a temp host buffer with the shape of target.
|
|
host_events = dpct_memcpy(
|
|
q, buf.get_ptr(), from_surface, to_range, from_range,
|
|
sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
|
|
// If has padding data, not sure whether it is useless. So fill temp
|
|
// buffer with it.
|
|
std::vector<sycl::event>{
|
|
dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
|
|
device_to_host, dep_events)});
|
|
}
|
|
// Copy from temp host buffer to device with only one submit.
|
|
event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
|
|
buf.get_size(), host_to_device,
|
|
host_events));
|
|
break;
|
|
}
|
|
case device_to_host:
|
|
{
|
|
host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
|
|
event_list);
|
|
// Copy from host temp buffer to host target with reshaping.
|
|
event_list = dpct_memcpy(
|
|
q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
|
|
sycl::id<3>(0, 0, 0), size, host_to_host,
|
|
// Copy from device to temp host buffer with only one submit.
|
|
std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
|
|
buf.get_size(),
|
|
device_to_host, dep_events)});
|
|
break;
|
|
}
|
|
case device_to_device:
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
{
|
|
auto &mm = mem_mgr::instance();
|
|
auto to_alloc = mm.translate_ptr(to_surface);
|
|
auto from_alloc = mm.translate_ptr(from_surface);
|
|
size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
|
|
size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
|
|
event_list.push_back(q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto to_o = sycl::id<1>(to_offset);
|
|
auto from_o = sycl::id<1>(from_offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::write,
|
|
sycl::access::target::device>
|
|
to_acc(to_alloc.buffer, cgh,
|
|
get_copy_range(size, to_slice, to_range.get(0)), to_o);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::read,
|
|
sycl::access::target::device>
|
|
from_acc(from_alloc.buffer, cgh,
|
|
get_copy_range(size, from_slice, from_range.get(0)), from_o);
|
|
cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
|
|
size,
|
|
[=](sycl::id<3> id) {
|
|
to_acc[get_offset(id, to_slice, to_range.get(0))] =
|
|
from_acc[get_offset(id, from_slice, from_range.get(0))];
|
|
}); }));
|
|
}
|
|
#else
|
|
event_list.push_back(q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
cgh.parallel_for<class dpct_memcpy_3d_detail>(
|
|
size,
|
|
[=](sycl::id<3> id) {
|
|
to_surface[get_offset(id, to_slice, to_range.get(0))] =
|
|
from_surface[get_offset(id, from_slice, from_range.get(0))];
|
|
}); }));
|
|
#endif
|
|
break;
|
|
default:
|
|
throw std::runtime_error("dpct_memcpy: invalid direction value");
|
|
}
|
|
return event_list;
|
|
}
|
|
|
|
/// memcpy 2D/3D matrix specified by pitched_data.
|
|
static inline std::vector<sycl::event>
|
|
dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
|
|
pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
|
|
memcpy_direction direction = automatic)
|
|
{
|
|
return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
|
|
sycl::range<3>(to.get_pitch(), to.get_y(), 1),
|
|
sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
|
|
size, direction);
|
|
}
|
|
|
|
/// memcpy 2D matrix with pitch.
|
|
static inline std::vector<sycl::event>
|
|
dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
|
|
size_t to_pitch, size_t from_pitch, size_t x, size_t y,
|
|
memcpy_direction direction = automatic)
|
|
{
|
|
return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
|
|
sycl::range<3>(from_pitch, y, 1),
|
|
sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
|
|
sycl::range<3>(x, y, 1), direction);
|
|
}
|
|
|
|
namespace deprecated
|
|
{
|
|
|
|
template <typename T, sycl::usm::alloc AllocKind>
|
|
class usm_allocator
|
|
{
|
|
private:
|
|
using Alloc = sycl::usm_allocator<T, AllocKind>;
|
|
Alloc _impl;
|
|
|
|
public:
|
|
using value_type = typename std::allocator_traits<Alloc>::value_type;
|
|
using pointer = typename std::allocator_traits<Alloc>::pointer;
|
|
using const_pointer = typename std::allocator_traits<Alloc>::const_pointer;
|
|
using void_pointer = typename std::allocator_traits<Alloc>::void_pointer;
|
|
using const_void_pointer =
|
|
typename std::allocator_traits<Alloc>::const_void_pointer;
|
|
using reference = typename std::allocator_traits<Alloc>::value_type &;
|
|
using const_reference =
|
|
const typename std::allocator_traits<Alloc>::value_type &;
|
|
using difference_type =
|
|
typename std::allocator_traits<Alloc>::difference_type;
|
|
using size_type = typename std::allocator_traits<Alloc>::size_type;
|
|
using propagate_on_container_copy_assignment = typename std::allocator_traits<
|
|
Alloc>::propagate_on_container_copy_assignment;
|
|
using propagate_on_container_move_assignment = typename std::allocator_traits<
|
|
Alloc>::propagate_on_container_move_assignment;
|
|
using propagate_on_container_swap =
|
|
typename std::allocator_traits<Alloc>::propagate_on_container_swap;
|
|
using is_always_equal =
|
|
typename std::allocator_traits<Alloc>::is_always_equal;
|
|
|
|
template <typename U>
|
|
struct rebind
|
|
{
|
|
typedef usm_allocator<U, AllocKind> other;
|
|
};
|
|
|
|
usm_allocator() : _impl(dpct::get_default_queue()) {}
|
|
~usm_allocator() {}
|
|
usm_allocator(const usm_allocator &other) : _impl(other._impl) {}
|
|
usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {}
|
|
pointer address(reference r) { return &r; }
|
|
const_pointer address(const_reference r) { return &r; }
|
|
pointer allocate(size_type cnt, const_void_pointer hint = nullptr)
|
|
{
|
|
return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint);
|
|
}
|
|
void deallocate(pointer p, size_type cnt)
|
|
{
|
|
std::allocator_traits<Alloc>::deallocate(_impl, p, cnt);
|
|
}
|
|
size_type max_size() const
|
|
{
|
|
return std::allocator_traits<Alloc>::max_size(_impl);
|
|
}
|
|
bool operator==(const usm_allocator &other) const { return _impl == other._impl; }
|
|
bool operator!=(const usm_allocator &other) const { return _impl != other._impl; }
|
|
};
|
|
|
|
} // namespace deprecated
|
|
|
|
inline void dpct_free(void *ptr,
|
|
const sycl::queue &q)
|
|
{
|
|
if (ptr)
|
|
{
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
detail::mem_mgr::instance().mem_free(ptr);
|
|
#else
|
|
sycl::free(ptr, q.get_context());
|
|
#endif // DPCT_USM_LEVEL_NONE
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
inline auto get_memory(const void *x)
|
|
{
|
|
T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
return dpct::get_buffer<std::remove_cv_t<T>>(new_x);
|
|
#else
|
|
return new_x;
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q)
|
|
{
|
|
using Ty = typename DataType<T>::T2;
|
|
Ty s_h;
|
|
if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
|
|
detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
|
|
.wait();
|
|
else
|
|
s_h = *reinterpret_cast<const Ty *>(s);
|
|
return s_h;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template <typename T>
|
|
inline auto get_value(const T *s, sycl::queue &q)
|
|
{
|
|
return detail::get_value(s, q);
|
|
}
|
|
|
|
namespace detail
|
|
{
|
|
template <class Ta, class Tb, class Tc, class Ts>
|
|
inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
|
oneapi::mkl::transpose b_trans, int m, int n, int k,
|
|
const void *alpha, const void *a, int lda, const void *b,
|
|
int ldb, const void *beta, void *c, int ldc)
|
|
{
|
|
#ifndef __INTEL_MKL__
|
|
GGML_UNUSED(q);
|
|
GGML_UNUSED(a_trans);
|
|
GGML_UNUSED(b_trans);
|
|
GGML_UNUSED(m);
|
|
GGML_UNUSED(n);
|
|
GGML_UNUSED(k);
|
|
GGML_UNUSED(alpha);
|
|
GGML_UNUSED(a);
|
|
GGML_UNUSED(lda);
|
|
GGML_UNUSED(b);
|
|
GGML_UNUSED(ldb);
|
|
GGML_UNUSED(beta);
|
|
GGML_UNUSED(c);
|
|
GGML_UNUSED(ldc);
|
|
throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces "
|
|
"Project does not support this API.");
|
|
#else
|
|
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
|
|
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
|
|
auto data_a = get_memory<const Ta>(a);
|
|
auto data_b = get_memory<const Tb>(b);
|
|
auto data_c = get_memory<Tc>(c);
|
|
oneapi::mkl::blas::column_major::gemm(
|
|
q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
|
|
data_b, ldb, beta_value, data_c, ldc);
|
|
#endif
|
|
}
|
|
|
|
template <typename VecT, class BinaryOperation, class = void>
|
|
class vectorized_binary
|
|
{
|
|
public:
|
|
inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
|
|
{
|
|
VecT v4;
|
|
for (size_t i = 0; i < v4.size(); ++i)
|
|
{
|
|
v4[i] = binary_op(a[i], b[i]);
|
|
}
|
|
return v4;
|
|
}
|
|
};
|
|
|
|
template <typename VecT, class BinaryOperation>
|
|
class vectorized_binary<
|
|
VecT, BinaryOperation,
|
|
std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>>
|
|
{
|
|
public:
|
|
inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
|
|
{
|
|
return binary_op(a, b).template as<VecT>();
|
|
}
|
|
};
|
|
|
|
template <class Ta, class Tb, class Tc, class Ts>
|
|
inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
|
oneapi::mkl::transpose b_trans, int m, int n, int k,
|
|
const void *alpha, const void **a, int lda,
|
|
const void **b, int ldb, const void *beta, void **c,
|
|
int ldc, int batch_size)
|
|
{
|
|
struct matrix_info_t
|
|
{
|
|
oneapi::mkl::transpose transpose_info[2];
|
|
Ts value_info[2];
|
|
std::int64_t size_info[3];
|
|
std::int64_t ld_info[3];
|
|
std::int64_t groupsize_info;
|
|
};
|
|
|
|
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
|
|
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
|
|
|
|
matrix_info_t *matrix_info =
|
|
(matrix_info_t *)std::malloc(sizeof(matrix_info_t));
|
|
matrix_info->transpose_info[0] = a_trans;
|
|
matrix_info->transpose_info[1] = b_trans;
|
|
matrix_info->value_info[0] = alpha_value;
|
|
matrix_info->value_info[1] = beta_value;
|
|
matrix_info->size_info[0] = m;
|
|
matrix_info->size_info[1] = n;
|
|
matrix_info->size_info[2] = k;
|
|
matrix_info->ld_info[0] = lda;
|
|
matrix_info->ld_info[1] = ldb;
|
|
matrix_info->ld_info[2] = ldc;
|
|
matrix_info->groupsize_info = batch_size;
|
|
|
|
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
|
|
q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
|
|
matrix_info->size_info, matrix_info->size_info + 1,
|
|
matrix_info->size_info + 2, matrix_info->value_info,
|
|
reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
|
|
reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
|
|
matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
|
|
matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
|
|
|
|
q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(e);
|
|
cgh.host_task([=] { std::free(matrix_info); }); });
|
|
}
|
|
|
|
template <class Ta, class Tb, class Tc, class Ts>
|
|
inline void
|
|
gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
|
oneapi::mkl::transpose b_trans, int m, int n,
|
|
int k, const void *alpha, const void *a, int lda,
|
|
long long int stride_a, const void *b, int ldb,
|
|
long long int stride_b, const void *beta, void *c,
|
|
int ldc, long long int stride_c, int batch_size)
|
|
{
|
|
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
|
|
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
|
|
auto data_a = get_memory<const Ta>(a);
|
|
auto data_b = get_memory<const Tb>(b);
|
|
auto data_c = get_memory<Tc>(c);
|
|
oneapi::mkl::blas::column_major::gemm_batch(
|
|
q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
|
|
stride_a, data_b, ldb, stride_b, beta_value,
|
|
data_c, ldc, stride_c, batch_size);
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template <typename VecT, class BinaryOperation>
|
|
inline unsigned vectorized_binary(unsigned a, unsigned b,
|
|
const BinaryOperation binary_op)
|
|
{
|
|
sycl::vec<unsigned, 1> v0{a}, v1{b};
|
|
auto v2 = v0.as<VecT>();
|
|
auto v3 = v1.as<VecT>();
|
|
auto v4 =
|
|
detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
|
|
v0 = v4.template as<sycl::vec<unsigned, 1>>();
|
|
return v0;
|
|
}
|
|
|
|
static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size,
|
|
memcpy_direction direction = automatic,
|
|
sycl::queue &q = dpct::get_default_queue())
|
|
{
|
|
detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction);
|
|
}
|
|
|
|
static inline unsigned int select_device(unsigned int id)
|
|
{
|
|
dev_mgr::instance().select_device(id);
|
|
return id;
|
|
}
|
|
|
|
template <typename T>
|
|
T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
|
|
unsigned int logical_sub_group_size = 32)
|
|
{
|
|
unsigned int id = g.get_local_linear_id();
|
|
unsigned int start_index =
|
|
id / logical_sub_group_size * logical_sub_group_size;
|
|
unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
|
|
return sycl::select_from_group(g, x,
|
|
target_offset < logical_sub_group_size
|
|
? start_index + target_offset
|
|
: id);
|
|
}
|
|
|
|
template <typename T>
|
|
sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val)
|
|
{
|
|
return sycl::vec<T, 1>(val)
|
|
.template as<sycl::vec<
|
|
std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
|
|
.template convert<T>();
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
using dot_product_acc_t =
|
|
std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
|
|
uint32_t, int32_t>;
|
|
|
|
template <typename T1, typename T2, typename T3>
|
|
inline auto dp4a(T1 a, T2 b, T3 c)
|
|
{
|
|
dot_product_acc_t<T1, T2> res = c;
|
|
auto va = extract_and_sign_or_zero_extend4(a);
|
|
auto vb = extract_and_sign_or_zero_extend4(b);
|
|
res += va[0] * vb[0];
|
|
res += va[1] * vb[1];
|
|
res += va[2] * vb[2];
|
|
res += va[3] * vb[3];
|
|
return res;
|
|
}
|
|
|
|
struct sub_sat
|
|
{
|
|
template <typename T>
|
|
auto operator()(const T x, const T y) const
|
|
{
|
|
return sycl::sub_sat(x, y);
|
|
}
|
|
};
|
|
|
|
template <typename S, typename T>
|
|
inline T vectorized_min(T a, T b)
|
|
{
|
|
sycl::vec<T, 1> v0{a}, v1{b};
|
|
auto v2 = v0.template as<S>();
|
|
auto v3 = v1.template as<S>();
|
|
auto v4 = sycl::min(v2, v3);
|
|
v0 = v4.template as<sycl::vec<T, 1>>();
|
|
return v0;
|
|
}
|
|
|
|
inline float pow(const float a, const int b) { return sycl::pown(a, b); }
|
|
inline double pow(const double a, const int b) { return sycl::pown(a, b); }
|
|
inline float pow(const float a, const float b) { return sycl::pow(a, b); }
|
|
inline double pow(const double a, const double b) { return sycl::pow(a, b); }
|
|
template <typename T, typename U>
|
|
inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
|
|
pow(const T a, const U b)
|
|
{
|
|
return sycl::pow(a, static_cast<T>(b));
|
|
}
|
|
template <typename T, typename U>
|
|
inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
|
|
pow(const T a, const U b)
|
|
{
|
|
return sycl::pow(static_cast<double>(a), static_cast<double>(b));
|
|
}
|
|
|
|
inline double min(const double a, const float b)
|
|
{
|
|
return sycl::fmin(a, static_cast<double>(b));
|
|
}
|
|
inline double min(const float a, const double b)
|
|
{
|
|
return sycl::fmin(static_cast<double>(a), b);
|
|
}
|
|
inline float min(const float a, const float b) { return sycl::fmin(a, b); }
|
|
inline double min(const double a, const double b) { return sycl::fmin(a, b); }
|
|
inline std::uint32_t min(const std::uint32_t a, const std::int32_t b)
|
|
{
|
|
return sycl::min(a, static_cast<std::uint32_t>(b));
|
|
}
|
|
inline std::uint32_t min(const std::int32_t a, const std::uint32_t b)
|
|
{
|
|
return sycl::min(static_cast<std::uint32_t>(a), b);
|
|
}
|
|
inline std::int32_t min(const std::int32_t a, const std::int32_t b)
|
|
{
|
|
return sycl::min(a, b);
|
|
}
|
|
inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b)
|
|
{
|
|
return sycl::min(a, b);
|
|
}
|
|
inline std::uint64_t min(const std::uint64_t a, const std::int64_t b)
|
|
{
|
|
return sycl::min(a, static_cast<std::uint64_t>(b));
|
|
}
|
|
inline std::uint64_t min(const std::int64_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::min(static_cast<std::uint64_t>(a), b);
|
|
}
|
|
inline std::int64_t min(const std::int64_t a, const std::int64_t b)
|
|
{
|
|
return sycl::min(a, b);
|
|
}
|
|
inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::min(a, b);
|
|
}
|
|
inline std::uint64_t min(const std::uint64_t a, const std::int32_t b)
|
|
{
|
|
return sycl::min(a, static_cast<std::uint64_t>(b));
|
|
}
|
|
inline std::uint64_t min(const std::int32_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::min(static_cast<std::uint64_t>(a), b);
|
|
}
|
|
inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b)
|
|
{
|
|
return sycl::min(a, static_cast<std::uint64_t>(b));
|
|
}
|
|
inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::min(static_cast<std::uint64_t>(a), b);
|
|
}
|
|
// max function overloads.
|
|
// For floating-point types, `float` or `double` arguments are acceptable.
|
|
// For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
|
|
// `std::int64_t` type arguments are acceptable.
|
|
inline double max(const double a, const float b)
|
|
{
|
|
return sycl::fmax(a, static_cast<double>(b));
|
|
}
|
|
inline double max(const float a, const double b)
|
|
{
|
|
return sycl::fmax(static_cast<double>(a), b);
|
|
}
|
|
inline float max(const float a, const float b) { return sycl::fmax(a, b); }
|
|
inline double max(const double a, const double b) { return sycl::fmax(a, b); }
|
|
inline std::uint32_t max(const std::uint32_t a, const std::int32_t b)
|
|
{
|
|
return sycl::max(a, static_cast<std::uint32_t>(b));
|
|
}
|
|
inline std::uint32_t max(const std::int32_t a, const std::uint32_t b)
|
|
{
|
|
return sycl::max(static_cast<std::uint32_t>(a), b);
|
|
}
|
|
inline std::int32_t max(const std::int32_t a, const std::int32_t b)
|
|
{
|
|
return sycl::max(a, b);
|
|
}
|
|
inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b)
|
|
{
|
|
return sycl::max(a, b);
|
|
}
|
|
inline std::uint64_t max(const std::uint64_t a, const std::int64_t b)
|
|
{
|
|
return sycl::max(a, static_cast<std::uint64_t>(b));
|
|
}
|
|
inline std::uint64_t max(const std::int64_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::max(static_cast<std::uint64_t>(a), b);
|
|
}
|
|
inline std::int64_t max(const std::int64_t a, const std::int64_t b)
|
|
{
|
|
return sycl::max(a, b);
|
|
}
|
|
inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::max(a, b);
|
|
}
|
|
inline std::uint64_t max(const std::uint64_t a, const std::int32_t b)
|
|
{
|
|
return sycl::max(a, static_cast<std::uint64_t>(b));
|
|
}
|
|
inline std::uint64_t max(const std::int32_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::max(static_cast<std::uint64_t>(a), b);
|
|
}
|
|
inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b)
|
|
{
|
|
return sycl::max(a, static_cast<std::uint64_t>(b));
|
|
}
|
|
inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b)
|
|
{
|
|
return sycl::max(static_cast<std::uint64_t>(a), b);
|
|
}
|
|
|
|
inline void
|
|
has_capability_or_fail(const sycl::device &dev,
|
|
const std::initializer_list<sycl::aspect> &props)
|
|
{
|
|
for (const auto &it : props)
|
|
{
|
|
if (dev.has(it))
|
|
continue;
|
|
switch (it)
|
|
{
|
|
case sycl::aspect::fp64:
|
|
throw std::runtime_error("'double' is not supported in '" +
|
|
dev.get_info<sycl::info::device::name>() +
|
|
"' device");
|
|
break;
|
|
case sycl::aspect::fp16:
|
|
throw std::runtime_error("'half' is not supported in '" +
|
|
dev.get_info<sycl::info::device::name>() +
|
|
"' device");
|
|
break;
|
|
default:
|
|
#define __SYCL_ASPECT(ASPECT, ID) \
|
|
case sycl::aspect::ASPECT: \
|
|
return #ASPECT;
|
|
#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
|
|
#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
|
|
auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string
|
|
{
|
|
switch (AspectNum)
|
|
{
|
|
#include <sycl/info/aspects.def>
|
|
#include <sycl/info/aspects_deprecated.def>
|
|
default:
|
|
return "unknown aspect";
|
|
}
|
|
};
|
|
#undef __SYCL_ASPECT_DEPRECATED_ALIAS
|
|
#undef __SYCL_ASPECT_DEPRECATED
|
|
#undef __SYCL_ASPECT
|
|
throw std::runtime_error(
|
|
"'" + getAspectNameStr(it) + "' is not supported in '" +
|
|
dev.get_info<sycl::info::device::name>() + "' device");
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline unsigned int get_current_device_id()
|
|
{
|
|
return dev_mgr::instance().current_device_id();
|
|
}
|
|
|
|
static inline device_ext &get_current_device()
|
|
{
|
|
return dev_mgr::instance().current_device();
|
|
}
|
|
|
|
static inline sycl::queue &get_in_order_queue()
|
|
{
|
|
return dev_mgr::instance().current_device().in_order_queue();
|
|
}
|
|
|
|
static sycl::event
|
|
dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
|
|
memcpy_direction direction,
|
|
const std::vector<sycl::event> &dep_events = {})
|
|
{
|
|
if (!size)
|
|
return sycl::event{};
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
auto &mm = mem_mgr::instance();
|
|
auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
|
|
|
|
switch (real_direction)
|
|
{
|
|
case host_to_host:
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
|
|
case host_to_device:
|
|
{
|
|
auto alloc = mm.translate_ptr(to_ptr);
|
|
size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto r = sycl::range<1>(size);
|
|
auto o = sycl::id<1>(offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::write,
|
|
sycl::access::target::device>
|
|
acc(alloc.buffer, cgh, r, o);
|
|
cgh.copy(from_ptr, acc); });
|
|
}
|
|
case device_to_host:
|
|
{
|
|
auto alloc = mm.translate_ptr(from_ptr);
|
|
size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto r = sycl::range<1>(size);
|
|
auto o = sycl::id<1>(offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::read,
|
|
sycl::access::target::device>
|
|
acc(alloc.buffer, cgh, r, o);
|
|
cgh.copy(acc, to_ptr); });
|
|
}
|
|
case device_to_device:
|
|
{
|
|
auto to_alloc = mm.translate_ptr(to_ptr);
|
|
auto from_alloc = mm.translate_ptr(from_ptr);
|
|
size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
|
|
size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
|
|
return q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto r = sycl::range<1>(size);
|
|
auto to_o = sycl::id<1>(to_offset);
|
|
auto from_o = sycl::id<1>(from_offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::write,
|
|
sycl::access::target::device>
|
|
to_acc(to_alloc.buffer, cgh, r, to_o);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::read,
|
|
sycl::access::target::device>
|
|
from_acc(from_alloc.buffer, cgh, r, from_o);
|
|
cgh.copy(from_acc, to_acc); });
|
|
}
|
|
default:
|
|
throw std::runtime_error("dpct_memcpy: invalid direction value");
|
|
}
|
|
#else
|
|
return q.memcpy(to_ptr, from_ptr, size, dep_events);
|
|
GGML_UNUSED(direction);
|
|
#endif // DPCT_USM_LEVEL_NONE
|
|
}
|
|
|
|
// Get actual copy range and make sure it will not exceed range.
|
|
static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
|
|
size_t pitch)
|
|
{
|
|
return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
|
|
}
|
|
|
|
static inline size_t get_offset(sycl::id<3> id, size_t slice,
|
|
size_t pitch)
|
|
{
|
|
return slice * id.get(2) + pitch * id.get(1) + id.get(0);
|
|
}
|
|
|
|
/// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
|
|
/// and \p from_range to another specified by \p to_ptr and \p to_range.
|
|
static inline std::vector<sycl::event>
|
|
dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
|
|
sycl::range<3> to_range, sycl::range<3> from_range,
|
|
sycl::id<3> to_id, sycl::id<3> from_id,
|
|
sycl::range<3> size, memcpy_direction direction,
|
|
const std::vector<sycl::event> &dep_events = {})
|
|
{
|
|
// RAII for host pointer
|
|
class host_buffer
|
|
{
|
|
void *_buf;
|
|
size_t _size;
|
|
sycl::queue &_q;
|
|
const std::vector<sycl::event> &_deps; // free operation depends
|
|
|
|
public:
|
|
host_buffer(size_t size, sycl::queue &q,
|
|
const std::vector<sycl::event> &deps)
|
|
: _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
|
|
void *get_ptr() const { return _buf; }
|
|
size_t get_size() const { return _size; }
|
|
~host_buffer()
|
|
{
|
|
if (_buf)
|
|
{
|
|
_q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(_deps);
|
|
cgh.host_task([buf = _buf] { std::free(buf); }); });
|
|
}
|
|
}
|
|
};
|
|
std::vector<sycl::event> event_list;
|
|
|
|
size_t to_slice = to_range.get(1) * to_range.get(0),
|
|
from_slice = from_range.get(1) * from_range.get(0);
|
|
unsigned char *to_surface =
|
|
(unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
|
|
const unsigned char *from_surface =
|
|
(const unsigned char *)from_ptr +
|
|
get_offset(from_id, from_slice, from_range.get(0));
|
|
|
|
if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
|
|
{
|
|
return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
|
|
direction, dep_events)};
|
|
}
|
|
direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
|
|
size_t size_slice = size.get(1) * size.get(0);
|
|
switch (direction)
|
|
{
|
|
case host_to_host:
|
|
for (size_t z = 0; z < size.get(2); ++z)
|
|
{
|
|
unsigned char *to_ptr = to_surface;
|
|
const unsigned char *from_ptr = from_surface;
|
|
if (to_range.get(0) == from_range.get(0) &&
|
|
to_range.get(0) == size.get(0))
|
|
{
|
|
event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
|
|
direction, dep_events));
|
|
}
|
|
else
|
|
{
|
|
for (size_t y = 0; y < size.get(1); ++y)
|
|
{
|
|
event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
|
|
direction, dep_events));
|
|
to_ptr += to_range.get(0);
|
|
from_ptr += from_range.get(0);
|
|
}
|
|
}
|
|
to_surface += to_slice;
|
|
from_surface += from_slice;
|
|
}
|
|
break;
|
|
case host_to_device:
|
|
{
|
|
host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
|
|
event_list);
|
|
std::vector<sycl::event> host_events;
|
|
if (to_slice == size_slice)
|
|
{
|
|
// Copy host data to a temp host buffer with the shape of target.
|
|
host_events =
|
|
dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
|
|
sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
|
|
host_to_host, dep_events);
|
|
}
|
|
else
|
|
{
|
|
// Copy host data to a temp host buffer with the shape of target.
|
|
host_events = dpct_memcpy(
|
|
q, buf.get_ptr(), from_surface, to_range, from_range,
|
|
sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
|
|
// If has padding data, not sure whether it is useless. So fill temp
|
|
// buffer with it.
|
|
std::vector<sycl::event>{
|
|
dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
|
|
device_to_host, dep_events)});
|
|
}
|
|
// Copy from temp host buffer to device with only one submit.
|
|
event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
|
|
buf.get_size(), host_to_device,
|
|
host_events));
|
|
break;
|
|
}
|
|
case device_to_host:
|
|
{
|
|
host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
|
|
event_list);
|
|
// Copy from host temp buffer to host target with reshaping.
|
|
event_list = dpct_memcpy(
|
|
q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
|
|
sycl::id<3>(0, 0, 0), size, host_to_host,
|
|
// Copy from device to temp host buffer with only one submit.
|
|
std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
|
|
buf.get_size(),
|
|
device_to_host, dep_events)});
|
|
break;
|
|
}
|
|
case device_to_device:
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
{
|
|
auto &mm = mem_mgr::instance();
|
|
auto to_alloc = mm.translate_ptr(to_surface);
|
|
auto from_alloc = mm.translate_ptr(from_surface);
|
|
size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
|
|
size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
|
|
event_list.push_back(q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
auto to_o = sycl::id<1>(to_offset);
|
|
auto from_o = sycl::id<1>(from_offset);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::write,
|
|
sycl::access::target::device>
|
|
to_acc(to_alloc.buffer, cgh,
|
|
get_copy_range(size, to_slice, to_range.get(0)), to_o);
|
|
sycl::accessor<byte_t, 1, sycl::access_mode::read,
|
|
sycl::access::target::device>
|
|
from_acc(from_alloc.buffer, cgh,
|
|
get_copy_range(size, from_slice, from_range.get(0)), from_o);
|
|
cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
|
|
size,
|
|
[=](sycl::id<3> id) {
|
|
to_acc[get_offset(id, to_slice, to_range.get(0))] =
|
|
from_acc[get_offset(id, from_slice, from_range.get(0))];
|
|
}); }));
|
|
}
|
|
#else
|
|
event_list.push_back(q.submit([&](sycl::handler &cgh)
|
|
{
|
|
cgh.depends_on(dep_events);
|
|
cgh.parallel_for<class dpct_memcpy_3d_detail>(
|
|
size,
|
|
[=](sycl::id<3> id) {
|
|
to_surface[get_offset(id, to_slice, to_range.get(0))] =
|
|
from_surface[get_offset(id, from_slice, from_range.get(0))];
|
|
}); }));
|
|
#endif
|
|
break;
|
|
default:
|
|
throw std::runtime_error("dpct_memcpy: invalid direction value");
|
|
}
|
|
return event_list;
|
|
}
|
|
|
|
/// memcpy 2D/3D matrix specified by pitched_data.
|
|
static inline std::vector<sycl::event>
|
|
dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
|
|
pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
|
|
memcpy_direction direction = automatic)
|
|
{
|
|
return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
|
|
sycl::range<3>(to.get_pitch(), to.get_y(), 1),
|
|
sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
|
|
size, direction);
|
|
}
|
|
|
|
/// memcpy 2D matrix with pitch.
|
|
static inline std::vector<sycl::event>
|
|
dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
|
|
size_t to_pitch, size_t from_pitch, size_t x, size_t y,
|
|
memcpy_direction direction = automatic)
|
|
{
|
|
return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
|
|
sycl::range<3>(from_pitch, y, 1),
|
|
sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
|
|
sycl::range<3>(x, y, 1), direction);
|
|
}
|
|
|
|
inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
|
oneapi::mkl::transpose b_trans, int m, int n, int k,
|
|
const void *alpha, const void *a, library_data_t a_type,
|
|
int lda, const void *b, library_data_t b_type, int ldb,
|
|
const void *beta, void *c, library_data_t c_type, int ldc,
|
|
library_data_t scaling_type)
|
|
{
|
|
if (scaling_type == library_data_t::real_float &&
|
|
c_type == library_data_t::complex_float)
|
|
{
|
|
scaling_type = library_data_t::complex_float;
|
|
}
|
|
else if (scaling_type == library_data_t::real_double &&
|
|
c_type == library_data_t::complex_double)
|
|
{
|
|
scaling_type = library_data_t::complex_double;
|
|
}
|
|
|
|
std::uint64_t key =
|
|
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
|
|
switch (key)
|
|
{
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_float, library_data_t::real_float,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_impl<float, float, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_double, library_data_t::real_double,
|
|
library_data_t::real_double, library_data_t::real_double):
|
|
{
|
|
detail::gemm_impl<double, double, double, double>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::complex_float, library_data_t::complex_float,
|
|
library_data_t::complex_float, library_data_t::complex_float):
|
|
{
|
|
detail::gemm_impl<std::complex<float>, std::complex<float>,
|
|
std::complex<float>, std::complex<float>>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::complex_double, library_data_t::complex_double,
|
|
library_data_t::complex_double, library_data_t::complex_double):
|
|
{
|
|
detail::gemm_impl<std::complex<double>, std::complex<double>,
|
|
std::complex<double>, std::complex<double>>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_half, library_data_t::real_half):
|
|
{
|
|
detail::gemm_impl<sycl::half, sycl::half, sycl::half,
|
|
sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a,
|
|
lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
|
|
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
|
|
ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_impl<sycl::half, sycl::half, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_half, library_data_t::real_float):
|
|
{
|
|
float alpha_value =
|
|
dpct::get_value(reinterpret_cast<const float *>(alpha), q);
|
|
float beta_value =
|
|
dpct::get_value(reinterpret_cast<const float *>(beta), q);
|
|
sycl::half alpha_half(alpha_value);
|
|
sycl::half beta_half(beta_value);
|
|
detail::gemm_impl<sycl::half, sycl::half, sycl::half,
|
|
sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half,
|
|
a, lda, b, ldb, &beta_half, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_int8, library_data_t::real_int8,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
|
library_data_t::real_bfloat16, library_data_t::real_float):
|
|
{
|
|
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
|
|
oneapi::mkl::bfloat16, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_int8, library_data_t::real_int8,
|
|
library_data_t::real_int32, library_data_t::real_int32):
|
|
{
|
|
float alpha_float =
|
|
dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
|
|
float beta_float =
|
|
dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
|
|
detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
|
|
q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc);
|
|
break;
|
|
}
|
|
default:
|
|
throw std::runtime_error("the combination of data type is unsupported");
|
|
}
|
|
} // gemm()
|
|
|
|
/// Computes a batch of matrix-matrix product with general matrices.
|
|
/// \param [in] q The queue where the routine should be executed.
|
|
/// \param [in] a_trans Specifies the operation applied to A.
|
|
/// \param [in] b_trans Specifies the operation applied to B.
|
|
/// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
|
|
/// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
|
|
/// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
|
|
/// \param [in] alpha Scaling factor for the matrix-matrix product.
|
|
/// \param [in] a Input matrix A.
|
|
/// \param [in] a_type Data type of the matrix A.
|
|
/// \param [in] lda Leading dimension of A.
|
|
/// \param [in] b Input matrix B.
|
|
/// \param [in] b_type Data type of the matrix B.
|
|
/// \param [in] ldb Leading dimension of B.
|
|
/// \param [in] beta Scaling factor for matrix C.
|
|
/// \param [in, out] c Input/Output matrix C.
|
|
/// \param [in] c_type Data type of the matrix C.
|
|
/// \param [in] ldc Leading dimension of C.
|
|
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
|
|
/// \param [in] scaling_type Data type of the scaling factors.
|
|
inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
|
oneapi::mkl::transpose b_trans, int m, int n, int k,
|
|
const void *alpha, const void *a[],
|
|
library_data_t a_type, int lda, const void *b[],
|
|
library_data_t b_type, int ldb, const void *beta,
|
|
void *c[], library_data_t c_type, int ldc,
|
|
int batch_size, library_data_t scaling_type)
|
|
{
|
|
#ifdef DPCT_USM_LEVEL_NONE
|
|
throw std::runtime_error("this API is unsupported when USM level is none");
|
|
#else
|
|
if (scaling_type == library_data_t::real_float &&
|
|
c_type == library_data_t::complex_float)
|
|
{
|
|
scaling_type = library_data_t::complex_float;
|
|
}
|
|
else if (scaling_type == library_data_t::real_double &&
|
|
c_type == library_data_t::complex_double)
|
|
{
|
|
scaling_type = library_data_t::complex_double;
|
|
}
|
|
|
|
std::uint64_t key =
|
|
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
|
|
switch (key)
|
|
{
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_float, library_data_t::real_float,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<float, float, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_double, library_data_t::real_double,
|
|
library_data_t::real_double, library_data_t::real_double):
|
|
{
|
|
detail::gemm_batch_impl<double, double, double, double>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::complex_float, library_data_t::complex_float,
|
|
library_data_t::complex_float, library_data_t::complex_float):
|
|
{
|
|
detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
|
|
std::complex<float>, std::complex<float>>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::complex_double, library_data_t::complex_double,
|
|
library_data_t::complex_double, library_data_t::complex_double):
|
|
{
|
|
detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
|
|
std::complex<double>, std::complex<double>>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_half, library_data_t::real_half):
|
|
{
|
|
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
|
|
sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
|
|
a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
#ifdef __INTEL_MKL__
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
|
library_data_t::real_bfloat16, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
|
|
oneapi::mkl::bfloat16, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
|
|
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
|
|
b, ldb, beta, c, ldc, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_int8, library_data_t::real_int8,
|
|
library_data_t::real_int32, library_data_t::real_int32):
|
|
{
|
|
float alpha_float =
|
|
dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
|
|
float beta_float =
|
|
dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
|
|
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
|
|
float>(q, a_trans, b_trans, m, n, k, &alpha_float,
|
|
a, lda, b, ldb, &beta_float, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_int8, library_data_t::real_int8,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
#endif
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_half, library_data_t::real_float):
|
|
{
|
|
float alpha_value =
|
|
dpct::get_value(reinterpret_cast<const float *>(alpha), q);
|
|
float beta_value =
|
|
dpct::get_value(reinterpret_cast<const float *>(beta), q);
|
|
sycl::half alpha_half(alpha_value);
|
|
sycl::half beta_half(beta_value);
|
|
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
|
|
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
|
|
batch_size);
|
|
break;
|
|
}
|
|
default:
|
|
throw std::runtime_error("the combination of data type is unsupported");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Computes a batch of matrix-matrix product with general matrices.
|
|
/// \param [in] q The queue where the routine should be executed.
|
|
/// \param [in] a_trans Specifies the operation applied to A.
|
|
/// \param [in] b_trans Specifies the operation applied to B.
|
|
/// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
|
|
/// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
|
|
/// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
|
|
/// \param [in] alpha Scaling factor for the matrix-matrix product.
|
|
/// \param [in] a Input matrix A.
|
|
/// \param [in] a_type Data type of the matrix A.
|
|
/// \param [in] lda Leading dimension of A.
|
|
/// \param [in] stride_a Stride between the different A matrices.
|
|
/// \param [in] b Input matrix B.
|
|
/// \param [in] b_type Data type of the matrix B.
|
|
/// \param [in] ldb Leading dimension of B.
|
|
/// \param [in] stride_b Stride between the different B matrices.
|
|
/// \param [in] beta Scaling factor for matrix C.
|
|
/// \param [in, out] c Input/Output matrix C.
|
|
/// \param [in] c_type Data type of the matrix C.
|
|
/// \param [in] ldc Leading dimension of C.
|
|
/// \param [in] stride_c Stride between the different C matrices.
|
|
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
|
|
/// \param [in] scaling_type Data type of the scaling factors.
|
|
inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
|
oneapi::mkl::transpose b_trans, int m, int n, int k,
|
|
const void *alpha, const void *a, library_data_t a_type,
|
|
int lda, long long int stride_a, const void *b,
|
|
library_data_t b_type, int ldb, long long int stride_b,
|
|
const void *beta, void *c, library_data_t c_type,
|
|
int ldc, long long int stride_c, int batch_size,
|
|
library_data_t scaling_type)
|
|
{
|
|
if (scaling_type == library_data_t::real_float &&
|
|
c_type == library_data_t::complex_float)
|
|
{
|
|
scaling_type = library_data_t::complex_float;
|
|
}
|
|
else if (scaling_type == library_data_t::real_double &&
|
|
c_type == library_data_t::complex_double)
|
|
{
|
|
scaling_type = library_data_t::complex_double;
|
|
}
|
|
|
|
std::uint64_t key =
|
|
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
|
|
switch (key)
|
|
{
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_float, library_data_t::real_float,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<float, float, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_double, library_data_t::real_double,
|
|
library_data_t::real_double, library_data_t::real_double):
|
|
{
|
|
detail::gemm_batch_impl<double, double, double, double>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::complex_float, library_data_t::complex_float,
|
|
library_data_t::complex_float, library_data_t::complex_float):
|
|
{
|
|
detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
|
|
std::complex<float>, std::complex<float>>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::complex_double, library_data_t::complex_double,
|
|
library_data_t::complex_double, library_data_t::complex_double):
|
|
{
|
|
detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
|
|
std::complex<double>, std::complex<double>>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_half, library_data_t::real_half):
|
|
{
|
|
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
|
|
sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
|
|
a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
#ifdef __INTEL_MKL__
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
|
library_data_t::real_bfloat16, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
|
|
oneapi::mkl::bfloat16, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
|
|
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
|
|
stride_a, b, ldb, stride_b, beta, c, ldc,
|
|
stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_int8, library_data_t::real_int8,
|
|
library_data_t::real_int32, library_data_t::real_int32):
|
|
{
|
|
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
|
|
std::int32_t>(q, a_trans, b_trans, m, n, k, alpha,
|
|
a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_int8, library_data_t::real_int8,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_float, library_data_t::real_float):
|
|
{
|
|
detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
|
|
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
|
|
beta, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
#endif
|
|
case detail::get_type_combination_id(
|
|
library_data_t::real_half, library_data_t::real_half,
|
|
library_data_t::real_half, library_data_t::real_float):
|
|
{
|
|
float alpha_value =
|
|
dpct::get_value(reinterpret_cast<const float *>(alpha), q);
|
|
float beta_value =
|
|
dpct::get_value(reinterpret_cast<const float *>(beta), q);
|
|
sycl::half alpha_half(alpha_value);
|
|
sycl::half beta_half(beta_value);
|
|
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
|
|
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b,
|
|
&beta_half, c, ldc, stride_c, batch_size);
|
|
break;
|
|
}
|
|
default:
|
|
throw std::runtime_error("the combination of data type is unsupported");
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr,
|
|
size_t from_pitch, size_t x, size_t y,
|
|
memcpy_direction direction = automatic,
|
|
sycl::queue &q = get_default_queue())
|
|
{
|
|
detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y,
|
|
direction);
|
|
}
|
|
|
|
using err0 = detail::generic_error_type<struct err0_tag, int>;
|
|
using err1 = detail::generic_error_type<struct err1_tag, int>;
|
|
|
|
} // COPY from DPCT head files
|
|
|
|
|
|
static int g_ggml_sycl_debug=0;
|
|
#define GGML_SYCL_DEBUG(...) do{if(g_ggml_sycl_debug) printf(__VA_ARGS__);}while(0)
|
|
|
|
#define CHECK_TRY_ERROR(expr) \
|
|
[&]() { \
|
|
try { \
|
|
expr; \
|
|
return dpct::success; \
|
|
} catch (std::exception const &e) { \
|
|
std::cerr << e.what()<< "\nException caught at file:" << __FILE__ \
|
|
<< ", line:" << __LINE__ <<", func:"<<__func__<< std::endl; \
|
|
return dpct::default_error; \
|
|
} \
|
|
}()
|
|
|
|
// #define DEBUG_SYCL_MALLOC
|
|
|
|
static int g_work_group_size = 0;
|
|
// typedef sycl::half ggml_fp16_t;
|
|
|
|
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
|
|
#define VER_4VEC 610 //todo for hardward optimize.
|
|
#define VER_GEN9 700 //todo for hardward optimize.
|
|
#define VER_GEN12 1000000 //todo for hardward optimize.
|
|
#define VER_GEN13 (VER_GEN12 + 1030) //todo for hardward optimize.
|
|
|
|
#define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares
|
|
|
|
|
|
//define for XMX in Intel GPU
|
|
//TODO: currently, it's not used for XMX really.
|
|
#define SYCL_USE_XMX
|
|
|
|
// max batch size to use MMQ kernels when tensor cores are available
|
|
#define XMX_MAX_BATCH_SIZE 32
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
|
|
|
static void crash(){
|
|
int *ptr = NULL;
|
|
*ptr = 0;
|
|
}
|
|
|
|
static void ggml_sycl_error(const char * stmt, const char * func, const char * file, const int line, const char * msg) {
|
|
fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
|
|
fprintf(stderr, " in function %s at %s:%d\n", func, file, line);
|
|
GGML_ASSERT(!"SYCL error");
|
|
}
|
|
|
|
#define SYCL_CHECK(err) do { \
|
|
auto err_ = (err); if (err_ != 0) ggml_sycl_error( \
|
|
#err, __func__, __FILE__, __LINE__, \
|
|
"Meet error in this line code!"); \
|
|
} while (0)
|
|
|
|
#if DPCT_COMPAT_RT_VERSION >= 11100
|
|
#define GGML_SYCL_ASSUME(x) __builtin_assume(x)
|
|
#else
|
|
#define GGML_SYCL_ASSUME(x)
|
|
#endif // DPCT_COMPAT_RT_VERSION >= 11100
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
typedef sycl::half dfloat; // dequantize float
|
|
typedef sycl::half2 dfloat2;
|
|
#else
|
|
typedef float dfloat; // dequantize float
|
|
typedef sycl::float2 dfloat2;
|
|
#endif //GGML_SYCL_F16
|
|
|
|
bool ggml_sycl_loaded(void);
|
|
void * ggml_sycl_host_malloc(size_t size);
|
|
void ggml_sycl_host_free(void * ptr);
|
|
bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
|
void ggml_sycl_set_tensor_split(const float * tensor_split);
|
|
void ggml_sycl_transform_tensor(void * data, struct ggml_tensor * tensor);
|
|
void ggml_sycl_free_data(struct ggml_tensor * tensor);
|
|
void ggml_sycl_assign_buffers(struct ggml_tensor * tensor);
|
|
void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
|
void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
|
void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
|
void ggml_sycl_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
|
void ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
|
|
void ggml_sycl_set_main_device(int main_device);
|
|
void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
|
|
void ggml_sycl_set_scratch_size(size_t scratch_size);
|
|
void ggml_sycl_free_scratch(void);
|
|
void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
|
|
bool ggml_backend_is_sycl(ggml_backend_t backend);
|
|
int ggml_backend_sycl_get_device(ggml_backend_t backend);
|
|
int get_main_device();
|
|
void print_ggml_tensor(const char*name, struct ggml_tensor *src);
|
|
void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt);
|
|
|
|
static __dpct_inline__ int get_int_from_int8(const int8_t *x8, const int &i32) {
|
|
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
|
|
|
int x32 = 0;
|
|
x32 |= x16[0] << 0;
|
|
x32 |= x16[1] << 16;
|
|
|
|
return x32;
|
|
}
|
|
|
|
static __dpct_inline__ int get_int_from_uint8(const uint8_t *x8,
|
|
const int &i32) {
|
|
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
|
|
|
int x32 = 0;
|
|
x32 |= x16[0] << 0;
|
|
x32 |= x16[1] << 16;
|
|
|
|
return x32;
|
|
}
|
|
|
|
static __dpct_inline__ int get_int_from_int8_aligned(const int8_t *x8,
|
|
const int &i32) {
|
|
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
|
}
|
|
|
|
static __dpct_inline__ int get_int_from_uint8_aligned(const uint8_t *x8,
|
|
const int &i32) {
|
|
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
|
}
|
|
|
|
template <typename T>
|
|
using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
|
|
int k, dpct::queue_ptr stream);
|
|
typedef to_t_sycl_t<float> to_fp32_sycl_t;
|
|
typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
|
|
|
|
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
|
|
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
|
|
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
|
typedef void (*ggml_sycl_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
|
typedef void (*ggml_sycl_op_mul_mat_t)(
|
|
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
|
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
|
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
|
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
|
const dpct::queue_ptr &stream);
|
|
typedef void (*ggml_sycl_op_flatten_t)(const ggml_tensor *src0,
|
|
const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream);
|
|
|
|
// QK = number of values after dequantization
|
|
// QR = QK / number of values before dequantization
|
|
// QI = number of 32 bit integers before dequantization
|
|
|
|
#define QK4_0 32
|
|
#define QR4_0 2
|
|
#define QI4_0 (QK4_0 / (4 * QR4_0))
|
|
typedef struct dpct_type_471834 {
|
|
sycl::half d; // delta
|
|
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
|
} block_q4_0;
|
|
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
|
|
|
#define QK4_1 32
|
|
#define QR4_1 2
|
|
#define QI4_1 (QK4_1 / (4 * QR4_1))
|
|
typedef struct dpct_type_143705 {
|
|
sycl::half2 dm; // dm.x = delta, dm.y = min
|
|
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
|
} block_q4_1;
|
|
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
|
|
|
#define QK5_0 32
|
|
#define QR5_0 2
|
|
#define QI5_0 (QK5_0 / (4 * QR5_0))
|
|
typedef struct dpct_type_673649 {
|
|
sycl::half d; // delta
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
|
} block_q5_0;
|
|
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
|
|
|
|
#define QK5_1 32
|
|
#define QR5_1 2
|
|
#define QI5_1 (QK5_1 / (4 * QR5_1))
|
|
typedef struct dpct_type_135589 {
|
|
sycl::half2 dm; // dm.x = delta, dm.y = min
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
|
} block_q5_1;
|
|
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
|
|
|
|
#define QK8_0 32
|
|
#define QR8_0 1
|
|
#define QI8_0 (QK8_0 / (4 * QR8_0))
|
|
typedef struct dpct_type_122878 {
|
|
sycl::half d; // delta
|
|
int8_t qs[QK8_0]; // quants
|
|
} block_q8_0;
|
|
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
|
|
|
#define QK8_1 32
|
|
#define QR8_1 1
|
|
#define QI8_1 (QK8_1 / (4 * QR8_1))
|
|
typedef struct dpct_type_143721 {
|
|
sycl::half2 ds; // ds.x = delta, ds.y = sum
|
|
int8_t qs[QK8_0]; // quants
|
|
} block_q8_1;
|
|
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
|
|
|
|
typedef float (*vec_dot_q_sycl_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
|
typedef void (*allocate_tiles_sycl_t)(int **x_ql, sycl::half2 **x_dm,
|
|
int **x_qh, int **x_sc);
|
|
typedef void (*load_tiles_sycl_t)(const void *__restrict__ vx,
|
|
int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm,
|
|
int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset,
|
|
const int &i_max, const int &k,
|
|
const int &blocks_per_row);
|
|
typedef float (*vec_dot_q_mul_mat_sycl_t)(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ms,
|
|
const int &i, const int &j, const int &k);
|
|
|
|
//================================= k-quants
|
|
|
|
#ifdef GGML_QKK_64
|
|
#define QK_K 64
|
|
#define K_SCALE_SIZE 4
|
|
#else
|
|
#define QK_K 256
|
|
#define K_SCALE_SIZE 12
|
|
#endif
|
|
|
|
#define QR2_K 4
|
|
#define QI2_K (QK_K / (4*QR2_K))
|
|
typedef struct dpct_type_619598 {
|
|
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
|
uint8_t qs[QK_K/4]; // quants
|
|
sycl::half2 dm; // super-block scale for quantized scales/mins
|
|
} block_q2_K;
|
|
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
|
|
|
|
#define QR3_K 4
|
|
#define QI3_K (QK_K / (4*QR3_K))
|
|
typedef struct dpct_type_138576 {
|
|
uint8_t hmask[QK_K/8]; // quants - high bit
|
|
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
|
#ifdef GGML_QKK_64
|
|
uint8_t scales[2]; // scales, quantized with 8 bits
|
|
#else
|
|
uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
|
|
#endif
|
|
sycl::half d; // super-block scale
|
|
} block_q3_K;
|
|
//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
|
|
|
|
#define QR4_K 2
|
|
#define QI4_K (QK_K / (4*QR4_K))
|
|
#ifdef GGML_QKK_64
|
|
typedef struct {
|
|
half dm[2]; // super-block scales/mins
|
|
uint8_t scales[2]; // 4-bit block scales/mins
|
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
|
} block_q4_K;
|
|
static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
|
#else
|
|
typedef struct dpct_type_154943 {
|
|
sycl::half2 dm; // super-block scale for quantized scales/mins
|
|
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
|
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
|
} block_q4_K;
|
|
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
|
|
#endif
|
|
|
|
#define QR5_K 2
|
|
#define QI5_K (QK_K / (4*QR5_K))
|
|
#ifdef GGML_QKK_64
|
|
typedef struct {
|
|
half d; // super-block scale
|
|
int8_t scales[QK_K/16]; // block scales
|
|
uint8_t qh[QK_K/8]; // quants, high bit
|
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
|
} block_q5_K;
|
|
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
|
#else
|
|
typedef struct dpct_type_866817 {
|
|
sycl::half2 dm; // super-block scale for quantized scales/mins
|
|
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
|
|
uint8_t qh[QK_K/8]; // quants, high bit
|
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
|
} block_q5_K;
|
|
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
|
#endif
|
|
|
|
#define QR6_K 2
|
|
#define QI6_K (QK_K / (4*QR6_K))
|
|
typedef struct dpct_type_107281 {
|
|
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
|
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
|
int8_t scales[QK_K/16]; // scales
|
|
sycl::half d; // delta
|
|
} block_q6_K;
|
|
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
|
|
|
|
#define WARP_SIZE 32
|
|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
|
|
|
#define SYCL_GELU_BLOCK_SIZE 256
|
|
#define SYCL_SILU_BLOCK_SIZE 256
|
|
#define SYCL_TANH_BLOCK_SIZE 256
|
|
#define SYCL_RELU_BLOCK_SIZE 256
|
|
#define SYCL_SQR_BLOCK_SIZE 256
|
|
#define SYCL_CPY_BLOCK_SIZE 32
|
|
#define SYCL_SCALE_BLOCK_SIZE 256
|
|
#define SYCL_CLAMP_BLOCK_SIZE 256
|
|
#define SYCL_ROPE_BLOCK_SIZE 256
|
|
#define SYCL_SOFT_MAX_BLOCK_SIZE 1024
|
|
#define SYCL_ALIBI_BLOCK_SIZE 32
|
|
#define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32
|
|
#define SYCL_QUANTIZE_BLOCK_SIZE 256
|
|
#define SYCL_DEQUANTIZE_BLOCK_SIZE 256
|
|
#define SYCL_GET_ROWS_BLOCK_SIZE 256
|
|
#define SYCL_UPSCALE_BLOCK_SIZE 256
|
|
#define SYCL_CONCAT_BLOCK_SIZE 256
|
|
#define SYCL_PAD_BLOCK_SIZE 256
|
|
#define SYCL_ACC_BLOCK_SIZE 256
|
|
#define SYCL_IM2COL_BLOCK_SIZE 256
|
|
|
|
// dmmv = dequantize_mul_mat_vec
|
|
#ifndef GGML_SYCL_DMMV_X
|
|
#define GGML_SYCL_DMMV_X 32
|
|
#endif
|
|
#ifndef GGML_SYCL_MMV_Y
|
|
#define GGML_SYCL_MMV_Y 1
|
|
#endif
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 2
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
#ifndef GGML_SYCL_PEER_MAX_BATCH_SIZE
|
|
#define GGML_SYCL_PEER_MAX_BATCH_SIZE 128
|
|
#endif // GGML_SYCL_PEER_MAX_BATCH_SIZE
|
|
|
|
#define MUL_MAT_SRC1_COL_STRIDE 128
|
|
|
|
#define MAX_STREAMS 8
|
|
static dpct::queue_ptr g_syclStreams[GGML_SYCL_MAX_DEVICES][MAX_STREAMS] = {
|
|
{0}};
|
|
|
|
struct ggml_tensor_extra_gpu {
|
|
void * data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
|
dpct::event_ptr
|
|
events[GGML_SYCL_MAX_DEVICES]
|
|
[MAX_STREAMS]; // events for synchronizing multiple GPUs
|
|
};
|
|
|
|
inline dpct::err0 ggml_sycl_set_device(const int device) try {
|
|
int current_device;
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
current_device = dpct::dev_mgr::instance().current_device_id()));
|
|
|
|
// GGML_SYCL_DEBUG("ggml_sycl_set_device device=%d, current_device=%d\n", device, current_device);
|
|
if (device == current_device) {
|
|
return 0;
|
|
}
|
|
|
|
return CHECK_TRY_ERROR(dpct::select_device(device));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
crash();
|
|
std::exit(1);
|
|
}
|
|
|
|
static int g_device_count = -1;
|
|
static int g_all_sycl_device_count = -1;
|
|
static int g_main_device = -1;
|
|
static int g_main_device_index = -1;
|
|
|
|
static float g_tensor_split[GGML_SYCL_MAX_DEVICES] = {0};
|
|
|
|
struct sycl_device_capabilities {
|
|
int cc; // compute capability
|
|
bool vmm; // virtual memory support
|
|
size_t vmm_granularity; // granularity of virtual memory
|
|
int device_id;
|
|
};
|
|
|
|
static sycl_device_capabilities g_device_caps[GGML_SYCL_MAX_DEVICES] = { {0, false, 0, -1} };
|
|
|
|
struct sycl_device_id2index {
|
|
int index;
|
|
};
|
|
|
|
static sycl_device_id2index g_sycl_device_id2index[GGML_SYCL_MAX_DEVICES] = { {-1} };
|
|
|
|
static void * g_scratch_buffer = nullptr;
|
|
static size_t g_scratch_size = 0; // disabled by default
|
|
static size_t g_scratch_offset = 0;
|
|
|
|
static dpct::queue_ptr g_sycl_handles[GGML_SYCL_MAX_DEVICES] = {nullptr};
|
|
|
|
int get_main_device(){
|
|
return g_main_device;
|
|
}
|
|
|
|
[[noreturn]]
|
|
static void bad_arch(const sycl::stream &stream_ct1) {
|
|
stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
|
|
"current GPU architecture.\n";
|
|
// __trap();
|
|
std::exit(1);
|
|
|
|
(void) bad_arch; // suppress unused function warning
|
|
}
|
|
|
|
void log_ggml_var_device(const char*name, float *src, size_t total_elements, bool src_on_device){
|
|
if(!g_ggml_sycl_debug) return;
|
|
if(!src){
|
|
printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
|
|
return;
|
|
}
|
|
char filename[1024];
|
|
sprintf(filename, "%s.txt", name);
|
|
printf("GGML Tensor:%s save to %s\n", name, filename);
|
|
|
|
size_t total_size = total_elements*sizeof(float);
|
|
float *local_buf = NULL;
|
|
// printf("total_size %d2, src_on_device %d\n", total_size, src_on_device);
|
|
if(src_on_device) {
|
|
local_buf = (float *) ggml_sycl_host_malloc(total_size);
|
|
// printf("local buf %p size %d bytes\n", local_buf, total_size);
|
|
ggml_sycl_set_device(g_main_device);
|
|
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
|
|
main_stream->memcpy(local_buf, src, total_size);
|
|
}
|
|
else {
|
|
local_buf = (float *)src;
|
|
// printf("local buf from src-> data %p\n", local_buf);
|
|
}
|
|
|
|
std::ofstream logfile;
|
|
logfile.open(filename);
|
|
// printf("local buf element %d\n", total_elements);
|
|
for(size_t i=0; i<total_elements; i++){
|
|
if((i+1)%20 ==0) logfile <<std::endl;
|
|
else logfile << local_buf[i] <<" ";
|
|
}
|
|
logfile <<std::endl;
|
|
logfile.close();
|
|
|
|
if(src_on_device) ggml_sycl_host_free(local_buf);
|
|
}
|
|
|
|
//todo: debug for crash in some case
|
|
void print_ggml_tensor(const char*name, struct ggml_tensor *src){
|
|
if(!g_ggml_sycl_debug) return;
|
|
if(!src){
|
|
printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
|
|
return;
|
|
}
|
|
|
|
size_t total_elements = ggml_nelements(src);
|
|
|
|
const bool src_on_device = src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
|
float *src_data =NULL;
|
|
if(src_on_device) {
|
|
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
|
src_data = (float*)src_extra->data_device[g_main_device_index];
|
|
}
|
|
else {
|
|
src_data = (float *)src->data;
|
|
}
|
|
|
|
log_ggml_var_device(name, src_data, total_elements, src_on_device);
|
|
}
|
|
|
|
static int log_file_name_idx=0;
|
|
void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt) {
|
|
stop_cnt = 4;
|
|
if(log_file_name_idx>=stop_cnt) return;
|
|
char filename[1280];
|
|
sprintf(filename, "%s_%07d", name, log_file_name_idx);
|
|
log_file_name_idx++;
|
|
print_ggml_tensor(filename, src);
|
|
// print_ggml_tensor("ggml_sycl_rms_norm_src0", (ggml_tensor *)src0);
|
|
// print_ggml_tensor("ggml_sycl_rms_norm_src1", (ggml_tensor *)src1);
|
|
// int *ptr = NULL;
|
|
// *ptr = 0;
|
|
}
|
|
|
|
static __dpct_inline__ float warp_reduce_sum(float x,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
/*
|
|
DPCT1096:98: The right-most dimension of the work-group used in the SYCL
|
|
kernel that calls this function may be less than "32". The function
|
|
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
|
CPU device. Modify the size of the work-group to ensure that the value
|
|
of the right-most dimension is a multiple of "32".
|
|
*/
|
|
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static __dpct_inline__ sycl::float2
|
|
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
|
|
mask);
|
|
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
|
|
mask);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
static __dpct_inline__ float warp_reduce_max(float x,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
/*
|
|
DPCT1096:97: The right-most dimension of the work-group used in the SYCL
|
|
kernel that calls this function may be less than "32". The function
|
|
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
|
CPU device. Modify the size of the work-group to ensure that the value
|
|
of the right-most dimension is a multiple of "32".
|
|
*/
|
|
x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
|
|
item_ct1.get_sub_group(), x, mask));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static __dpct_inline__ float op_repeat(const float a, const float b) {
|
|
return b;
|
|
GGML_UNUSED(a);
|
|
}
|
|
|
|
static __dpct_inline__ float op_add(const float a, const float b) {
|
|
return a + b;
|
|
}
|
|
|
|
static __dpct_inline__ float op_mul(const float a, const float b) {
|
|
return a * b;
|
|
}
|
|
|
|
static __dpct_inline__ float op_div(const float a, const float b) {
|
|
return a / b;
|
|
}
|
|
|
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
|
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
|
int ne0, int ne1, int ne2, int ne3,
|
|
int ne10, int ne11, int ne12, int ne13,
|
|
/*int s0, */ int s1, int s2, int s3,
|
|
/*int s10,*/ int s11, int s12, int s13,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1));
|
|
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
|
item_ct1.get_local_id(0)) /
|
|
ne3;
|
|
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
|
item_ct1.get_local_id(0)) %
|
|
ne3;
|
|
|
|
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
|
return;
|
|
}
|
|
|
|
const int i11 = i1 % ne11;
|
|
const int i12 = i2 % ne12;
|
|
const int i13 = i3 % ne13;
|
|
|
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
|
const size_t i_dst = i_src0;
|
|
|
|
const src0_t * src0_row = src0 + i_src0;
|
|
const src1_t * src1_row = src1 + i_src1;
|
|
dst_t * dst_row = dst + i_dst;
|
|
|
|
for (int i0 = i0s; i0 < ne0;
|
|
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
|
|
const int i10 = i0 % ne10;
|
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
|
}
|
|
}
|
|
|
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
|
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
|
int ne0, int ne1, int ne2, int ne3,
|
|
int ne10, int ne11, int ne12, int ne13,
|
|
/*int s0, */ int s1, int s2, int s3,
|
|
/*int s10,*/ int s11, int s12, int s13,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
const int i3 = i/(ne2*ne1*ne0);
|
|
const int i2 = (i/(ne1*ne0)) % ne2;
|
|
const int i1 = (i/ne0) % ne1;
|
|
const int i0 = i % ne0;
|
|
|
|
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
|
return;
|
|
}
|
|
|
|
const int i11 = i1 % ne11;
|
|
const int i12 = i2 % ne12;
|
|
const int i13 = i3 % ne13;
|
|
|
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
|
const size_t i_dst = i_src0;
|
|
|
|
const src0_t * src0_row = src0 + i_src0;
|
|
const src1_t * src1_row = src1 + i_src1;
|
|
dst_t * dst_row = dst + i_dst;
|
|
|
|
const int i10 = i0 % ne10;
|
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
|
}
|
|
|
|
static void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
|
const int ne10, const int ne11, const int ne12,
|
|
const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
int src1_idx = i - offset;
|
|
int oz = src1_idx / nb2;
|
|
int oy = (src1_idx - (oz * nb2)) / nb1;
|
|
int ox = src1_idx % nb1;
|
|
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
|
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
|
} else {
|
|
dst[i] = x[i];
|
|
}
|
|
}
|
|
|
|
static void gelu_f32(const float * x, float * dst, const int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const float GELU_COEF_A = 0.044715f;
|
|
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
float xi = x[i];
|
|
dst[i] = 0.5f * xi *
|
|
(1.0f +
|
|
sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
|
|
}
|
|
|
|
static void silu_f32(const float * x, float * dst, const int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
|
|
}
|
|
|
|
static void gelu_quick_f32(const float *x, float *dst, int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const float GELU_QUICK_COEF = -1.702f;
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
|
|
}
|
|
|
|
static void tanh_f32(const float *x, float *dst, int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = sycl::tanh((float)(x[i]));
|
|
}
|
|
|
|
static void relu_f32(const float * x, float * dst, const int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = sycl::fmax((float)(x[i]), (float)0);
|
|
}
|
|
|
|
static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = sycl::fmax((float)(x[i]), (float)0) +
|
|
sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
|
|
}
|
|
|
|
static void sqr_f32(const float * x, float * dst, const int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
dst[i] = x[i] * x[i];
|
|
}
|
|
|
|
static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
|
|
const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int tid = item_ct1.get_local_id(2);
|
|
|
|
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
|
|
|
|
for (int col = tid; col < ncols; col += block_size) {
|
|
const float xi = x[row*ncols + col];
|
|
mean_var.x() += xi;
|
|
mean_var.y() += xi * xi;
|
|
}
|
|
|
|
// sum up partial sums
|
|
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
|
if (block_size > WARP_SIZE) {
|
|
|
|
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
|
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
|
if (lane_id == 0) {
|
|
s_sum[warp_id] = mean_var;
|
|
}
|
|
/*
|
|
DPCT1118:0: SYCL group functions and algorithms must be encountered in
|
|
converged control flow. You may need to adjust the code.
|
|
*/
|
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
|
mean_var = s_sum[lane_id];
|
|
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
|
}
|
|
|
|
const float mean = mean_var.x() / ncols;
|
|
const float var = mean_var.y() / ncols - mean * mean;
|
|
const float inv_std = sycl::rsqrt(var + eps);
|
|
|
|
for (int col = tid; col < ncols; col += block_size) {
|
|
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
|
}
|
|
}
|
|
|
|
static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
int nidx = item_ct1.get_local_id(2) +
|
|
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
|
if (nidx >= ne0) {
|
|
return;
|
|
}
|
|
// operation
|
|
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
|
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
|
if (item_ct1.get_group(0) < ne02) { // src0
|
|
int offset_src =
|
|
nidx + item_ct1.get_group(1) * ne0 +
|
|
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
|
dst[offset_dst] = x[offset_src];
|
|
} else {
|
|
int offset_src =
|
|
nidx + item_ct1.get_group(1) * ne0 +
|
|
(item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
|
|
dst[offset_dst] = y[offset_src];
|
|
}
|
|
}
|
|
|
|
static void upscale_f32(const float *x, float *dst, const int ne00, const int nb02, const int scale_factor,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
int ne0 = ne00 * scale_factor;
|
|
int nidx = item_ct1.get_local_id(2) +
|
|
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
|
if (nidx >= ne0) {
|
|
return;
|
|
}
|
|
// operation
|
|
int i00 = nidx / scale_factor;
|
|
int i01 = item_ct1.get_group(1) / scale_factor;
|
|
int offset_src = i00 + i01 * ne00 + item_ct1.get_group(0) * nb02;
|
|
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
|
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
|
dst[offset_dst] = x[offset_src];
|
|
}
|
|
|
|
static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
int nidx = item_ct1.get_local_id(2) +
|
|
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
|
if (nidx >= ne0) {
|
|
return;
|
|
}
|
|
|
|
// operation
|
|
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
|
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
|
if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
|
|
item_ct1.get_group(0) < ne02) {
|
|
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
|
|
item_ct1.get_group(0) * ne00 * ne01;
|
|
dst[offset_dst] = x[offset_src];
|
|
} else {
|
|
dst[offset_dst] = 0.0f;
|
|
}
|
|
}
|
|
|
|
static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
|
|
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
|
|
int start = item_ct1.get_group(2) * group_size;
|
|
int end = start + group_size;
|
|
|
|
start += item_ct1.get_local_id(2);
|
|
|
|
if (end >= ne_elements) {
|
|
end = ne_elements;
|
|
}
|
|
|
|
float tmp = 0.0f; // partial sum for thread in warp
|
|
|
|
for (int j = start; j < end; j += block_size) {
|
|
tmp += x[j];
|
|
}
|
|
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
if (block_size > WARP_SIZE) {
|
|
|
|
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
|
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
|
if (lane_id == 0) {
|
|
s_sum[warp_id] = tmp;
|
|
}
|
|
/*
|
|
DPCT1118:1: SYCL group functions and algorithms must be encountered in
|
|
converged control flow. You may need to adjust the code.
|
|
*/
|
|
/*
|
|
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
|
|
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
|
better performance if there is no access to global memory.
|
|
*/
|
|
item_ct1.barrier();
|
|
tmp = s_sum[lane_id];
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
}
|
|
|
|
float mean = tmp / group_size;
|
|
tmp = 0.0f;
|
|
|
|
for (int j = start; j < end; j += block_size) {
|
|
float xi = x[j] - mean;
|
|
dst[j] = xi;
|
|
tmp += xi * xi;
|
|
}
|
|
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
if (block_size > WARP_SIZE) {
|
|
|
|
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
|
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
|
if (lane_id == 0) {
|
|
s_sum[warp_id] = tmp;
|
|
}
|
|
/*
|
|
DPCT1118:2: SYCL group functions and algorithms must be encountered in
|
|
converged control flow. You may need to adjust the code.
|
|
*/
|
|
/*
|
|
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
|
|
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
|
better performance if there is no access to global memory.
|
|
*/
|
|
item_ct1.barrier();
|
|
tmp = s_sum[lane_id];
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
}
|
|
|
|
float variance = tmp / group_size;
|
|
float scale = sycl::rsqrt(variance + eps);
|
|
for (int j = start; j < end; j += block_size) {
|
|
dst[j] *= scale;
|
|
}
|
|
}
|
|
|
|
static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
|
|
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int tid = item_ct1.get_local_id(2);
|
|
|
|
float tmp = 0.0f; // partial sum for thread in warp
|
|
|
|
for (int col = tid; col < ncols; col += block_size) {
|
|
const float xi = x[row*ncols + col];
|
|
tmp += xi * xi;
|
|
}
|
|
|
|
// sum up partial sums
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
if (block_size > WARP_SIZE) {
|
|
|
|
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
|
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
|
if (lane_id == 0) {
|
|
s_sum[warp_id] = tmp;
|
|
}
|
|
/*
|
|
DPCT1118:3: SYCL group functions and algorithms must be encountered in
|
|
converged control flow. You may need to adjust the code.
|
|
*/
|
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
|
tmp = s_sum[lane_id];
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
}
|
|
|
|
const float mean = tmp / ncols;
|
|
const float scale = sycl::rsqrt(mean + eps);
|
|
|
|
for (int col = tid; col < ncols; col += block_size) {
|
|
dst[row*ncols + col] = scale * x[row*ncols + col];
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
|
|
const int iqs, dfloat2 &v) {
|
|
const block_q4_0 * x = (const block_q4_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
const int vui = x[ib].qs[iqs];
|
|
|
|
v.x() = vui & 0xF;
|
|
v.y() = vui >> 4;
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
// v = v - {8.0f, 8.0f};
|
|
// v = v * {d, d};
|
|
v.s0() = (v.s0() - 8.0f) * d;
|
|
v.s1() = (v.s1() - 8.0f) * d;
|
|
|
|
#else
|
|
v.x() = (v.x() - 8.0f) * d;
|
|
v.y() = (v.y() - 8.0f) * d;
|
|
#endif // GGML_SYCL_F16
|
|
}
|
|
|
|
static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
|
|
const int iqs, dfloat2 &v) {
|
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
|
|
|
const dfloat d = x[ib].dm[0];
|
|
const dfloat m = x[ib].dm[1];
|
|
|
|
const int vui = x[ib].qs[iqs];
|
|
|
|
v.x() = vui & 0xF;
|
|
v.y() = vui >> 4;
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
// v = v * {d, d};
|
|
// v = v + {m, m};
|
|
v.s0() = (v.s0() * d) + m;
|
|
v.s1() = (v.s1() * d) + m;
|
|
|
|
#else
|
|
v.x() = (v.x() * d) + m;
|
|
v.y() = (v.y() * d) + m;
|
|
#endif // GGML_SYCL_F16
|
|
}
|
|
|
|
static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
|
|
const int iqs, dfloat2 &v) {
|
|
const block_q5_0 * x = (const block_q5_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
// v = v - {16.0f, 16.0f};
|
|
// v = v * {d, d};
|
|
v.s0() = (v.s0() - 16.0f) * d;
|
|
v.s1() = (v.s1() - 16.0f) * d;
|
|
|
|
#else
|
|
v.x() = (v.x() - 16.0f) * d;
|
|
v.y() = (v.y() - 16.0f) * d;
|
|
#endif // GGML_SYCL_F16
|
|
}
|
|
|
|
static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
|
|
const int iqs, dfloat2 &v) {
|
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
|
|
|
const dfloat d = x[ib].dm[0];
|
|
const dfloat m = x[ib].dm[1];
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
// v = v * {d, d};
|
|
// v = v + {m, m};
|
|
v.s0() = (v.s0() * d) + m;
|
|
v.s1() = (v.s1() * d) + m;
|
|
#else
|
|
v.x() = (v.x() * d) + m;
|
|
v.y() = (v.y() * d) + m;
|
|
#endif // GGML_SYCL_F16
|
|
}
|
|
|
|
static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
|
|
const int iqs, dfloat2 &v) {
|
|
const block_q8_0 * x = (const block_q8_0 *) vx;
|
|
|
|
const dfloat d = x[ib].d;
|
|
|
|
v.x() = x[ib].qs[iqs + 0];
|
|
v.y() = x[ib].qs[iqs + 1];
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
// v = v * {d, d};
|
|
v.s0() *= d;
|
|
v.s1() *= d;
|
|
#else
|
|
v.x() *= d;
|
|
v.y() *= d;
|
|
#endif // GGML_SYCL_F16
|
|
}
|
|
|
|
//================================== k-quants
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const int i = item_ct1.get_group(2);
|
|
const block_q2_K * x = (const block_q2_K *) vx;
|
|
|
|
const int tid = item_ct1.get_local_id(2);
|
|
#if QK_K == 256
|
|
const int n = tid/32;
|
|
const int l = tid - 32*n;
|
|
const int is = 8*n + l/16;
|
|
|
|
const uint8_t q = x[i].qs[32*n + l];
|
|
dst_t * y = yy + i*QK_K + 128*n;
|
|
|
|
float dall = x[i].dm[0];
|
|
float dmin = x[i].dm[1];
|
|
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
|
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
|
#else
|
|
const int is = tid/16; // 0 or 1
|
|
const int il = tid%16; // 0...15
|
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
dst_t * y = yy + i*QK_K + 16*is + il;
|
|
float dall = __low2half(x[i].dm);
|
|
float dmin = __high2half(x[i].dm);
|
|
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
|
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
|
#endif
|
|
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const int i = item_ct1.get_group(2);
|
|
const block_q3_K * x = (const block_q3_K *) vx;
|
|
|
|
#if QK_K == 256
|
|
const int r = item_ct1.get_local_id(2) / 4;
|
|
const int tid = r/2;
|
|
const int is0 = r%2;
|
|
const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
|
|
const int n = tid / 4;
|
|
const int j = tid - 4*n;
|
|
|
|
uint8_t m = 1 << (4*n + j);
|
|
int is = 8*n + 2*j + is0;
|
|
int shift = 2*j;
|
|
|
|
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
|
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
|
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
|
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
|
float d_all = x[i].d;
|
|
float dl = d_all * (us - 32);
|
|
|
|
dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
|
const uint8_t * q = x[i].qs + 32*n;
|
|
const uint8_t * hm = x[i].hmask;
|
|
|
|
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
|
#else
|
|
const int tid = threadIdx.x;
|
|
const int is = tid/16; // 0 or 1
|
|
const int il = tid%16; // 0...15
|
|
const int im = il/8; // 0...1
|
|
const int in = il%8; // 0...7
|
|
|
|
dst_t * y = yy + i*QK_K + 16*is + il;
|
|
|
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
|
const float d = (float)x[i].d;
|
|
|
|
if (is == 0) {
|
|
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
} else {
|
|
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
#if QK_K == 256
|
|
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
|
if (j < 4) {
|
|
d = q[j] & 63; m = q[j + 4] & 63;
|
|
} else {
|
|
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
|
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const block_q4_K * x = (const block_q4_K *) vx;
|
|
|
|
const int i = item_ct1.get_group(2);
|
|
|
|
#if QK_K == 256
|
|
// assume 32 threads
|
|
const int tid = item_ct1.get_local_id(2);
|
|
const int il = tid/8;
|
|
const int ir = tid%8;
|
|
const int is = 2*il;
|
|
const int n = 4;
|
|
|
|
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
|
|
|
const float dall = x[i].dm[0];
|
|
const float dmin = x[i].dm[1];
|
|
|
|
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
|
for (int l = 0; l < n; ++l) {
|
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
|
y[l +32] = d2 * (q[l] >> 4) - m2;
|
|
}
|
|
#else
|
|
const int tid = threadIdx.x;
|
|
const uint8_t * q = x[i].qs;
|
|
dst_t * y = yy + i*QK_K;
|
|
const float d = (float)x[i].dm[0];
|
|
const float m = (float)x[i].dm[1];
|
|
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
|
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
|
#endif
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const block_q5_K * x = (const block_q5_K *) vx;
|
|
|
|
const int i = item_ct1.get_group(2);
|
|
|
|
#if QK_K == 256
|
|
// assume 64 threads - this is very slightly better than the one below
|
|
const int tid = item_ct1.get_local_id(2);
|
|
const int il = tid/16; // il is in 0...3
|
|
const int ir = tid%16; // ir is in 0...15
|
|
const int is = 2*il; // is is in 0...6
|
|
|
|
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
|
|
|
const float dall = x[i].dm[0];
|
|
const float dmin = x[i].dm[1];
|
|
|
|
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
|
const uint8_t * qh = x[i].qh + 2*ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
|
const float d1 = dall * sc; const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
|
const float d2 = dall * sc; const float m2 = dmin * m;
|
|
|
|
uint8_t hm = 1 << (2*il);
|
|
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
|
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
|
hm <<= 1;
|
|
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
|
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
|
#else
|
|
const int tid = threadIdx.x;
|
|
const uint8_t q = x[i].qs[tid];
|
|
const int im = tid/8; // 0...3
|
|
const int in = tid%8; // 0...7
|
|
const int is = tid/16; // 0 or 1
|
|
const uint8_t h = x[i].qh[in] >> im;
|
|
const float d = x[i].d;
|
|
dst_t * y = yy + i*QK_K + tid;
|
|
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
|
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
|
#endif
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const block_q6_K * x = (const block_q6_K *) vx;
|
|
|
|
const int i = item_ct1.get_group(2);
|
|
#if QK_K == 256
|
|
|
|
// assume 64 threads - this is very slightly better than the one below
|
|
const int tid = item_ct1.get_local_id(2);
|
|
const int ip = tid/32; // ip is 0 or 1
|
|
const int il = tid - 32*ip; // 0...32
|
|
const int is = 8*ip + il/16;
|
|
|
|
dst_t * y = yy + i*QK_K + 128*ip + il;
|
|
|
|
const float d = x[i].d;
|
|
|
|
const uint8_t * ql = x[i].ql + 64*ip + il;
|
|
const uint8_t qh = x[i].qh[32*ip + il];
|
|
const int8_t * sc = x[i].scales + is;
|
|
|
|
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
|
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
|
#else
|
|
|
|
// assume 32 threads
|
|
const int tid = threadIdx.x;
|
|
const int ip = tid/16; // 0 or 1
|
|
const int il = tid - 16*ip; // 0...15
|
|
|
|
dst_t * y = yy + i*QK_K + 16*ip + il;
|
|
|
|
const float d = x[i].d;
|
|
|
|
const uint8_t ql = x[i].ql[16*ip + il];
|
|
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
|
const int8_t * sc = x[i].scales;
|
|
|
|
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
DPCT1110:4: The total declared local variable size in device function
|
|
dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
|
|
pressure. Consult with your hardware vendor to find the total register size
|
|
available and adjust the code, or use smaller sub-group size to avoid high
|
|
register pressure.
|
|
*/
|
|
static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
|
|
const float *__restrict__ yy,
|
|
float *__restrict__ dst,
|
|
const int ncols, int nrows,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
#if QK_K == 256
|
|
const int tid =
|
|
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
|
const int ix =
|
|
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int s_offset = 8*im;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint32_t aux[4];
|
|
const uint8_t * d = (const uint8_t *)aux;
|
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
|
|
const float dall = x[i].dm[0];
|
|
const float dmin = x[i].dm[1];
|
|
|
|
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
|
aux[0] = a[0] & 0x0f0f0f0f;
|
|
aux[1] = a[1] & 0x0f0f0f0f;
|
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
|
|
|
}
|
|
tmp += dall * sum1 - dmin * sum2;
|
|
|
|
}
|
|
#else
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
const int offset = tid * K_QUANTS_PER_ITERATION;
|
|
|
|
uint32_t uaux[2];
|
|
const uint8_t * d = (const uint8_t *)uaux;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + offset;
|
|
const uint8_t * q = x[i].qs + offset;
|
|
const uint32_t * s = (const uint32_t *)x[i].scales;
|
|
|
|
uaux[0] = s[0] & 0x0f0f0f0f;
|
|
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
|
|
|
const float2 dall = __half22float2(x[i].dm);
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
const uint8_t ql = q[l];
|
|
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
|
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
|
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
|
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
|
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
|
}
|
|
tmp += dall.x * sum1 - dall.y * sum2;
|
|
}
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (item_ct1.get_local_id(2) == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
DPCT1110:5: The total declared local variable size in device function
|
|
dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
|
|
pressure. Consult with your hardware vendor to find the total register size
|
|
available and adjust the code, or use smaller sub-group size to avoid high
|
|
register pressure.
|
|
*/
|
|
static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
|
|
const float *__restrict__ yy,
|
|
float *__restrict__ dst,
|
|
const int ncols, int nrows,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
#if QK_K == 256
|
|
|
|
const uint16_t kmask1 = 0x0303;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const int tid =
|
|
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix =
|
|
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0....15 or 0...7
|
|
|
|
const uint8_t m = 1 << (4*im);
|
|
|
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint16_t utmp[4];
|
|
const int8_t * s = (const int8_t *)utmp;
|
|
|
|
const uint16_t s_shift = 4*im;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
const uint8_t * h = x[i].hmask + l0;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
|
const float d = x[i].d;
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
|
}
|
|
tmp += d * sum;
|
|
|
|
}
|
|
#else
|
|
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
|
const int in = offset/8; // 0 or 1
|
|
const int im = offset%8; // 0...7
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + offset;
|
|
const uint8_t * q = x[i].qs + offset;
|
|
const uint8_t * s = x[i].scales;
|
|
|
|
const float dall = (float)x[i].d;
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
const uint8_t hl = x[i].hmask[im+l] >> in;
|
|
const uint8_t ql = q[l];
|
|
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
|
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
|
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
|
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
|
}
|
|
tmp += sum;
|
|
}
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (item_ct1.get_local_id(2) == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
DPCT1110:6: The total declared local variable size in device function
|
|
dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
|
|
pressure. Consult with your hardware vendor to find the total register size
|
|
available and adjust the code, or use smaller sub-group size to avoid high
|
|
register pressure.
|
|
*/
|
|
static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
|
|
const float *__restrict__ yy,
|
|
float *__restrict__ dst,
|
|
const int ncols, int nrows,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
if (row > nrows) return;
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
|
|
|
#if QK_K == 256
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int tid =
|
|
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix =
|
|
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
|
|
|
const int il = tid/step; // 0...3
|
|
const int ir = tid - step*il; // 0...7 or 0...3
|
|
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
#if K_QUANTS_PER_ITERATION == 2
|
|
uint32_t q32[4];
|
|
const uint8_t * q4 = (const uint8_t *)q32;
|
|
#else
|
|
uint16_t q16[4];
|
|
const uint8_t * q4 = (const uint8_t *)q16;
|
|
#endif
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = x[i].dm[0];
|
|
const float dmin = x[i].dm[1];
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
#if K_QUANTS_PER_ITERATION == 2
|
|
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
|
const uint32_t * q2 = q1 + 16;
|
|
|
|
q32[0] = q1[0] & 0x0f0f0f0f;
|
|
q32[1] = q1[0] & 0xf0f0f0f0;
|
|
q32[2] = q2[0] & 0x0f0f0f0f;
|
|
q32[3] = q2[0] & 0xf0f0f0f0;
|
|
|
|
sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
|
|
s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
|
|
s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
|
|
dmin * smin;
|
|
#else
|
|
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
|
const uint16_t * q2 = q1 + 32;
|
|
|
|
q16[0] = q1[0] & 0x0f0f;
|
|
q16[1] = q1[0] & 0xf0f0;
|
|
q16[2] = q2[0] & 0x0f0f;
|
|
q16[3] = q2[0] & 0xf0f0;
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < 2; ++l) {
|
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
|
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
|
#endif
|
|
|
|
}
|
|
#else
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
|
|
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
|
|
uint16_t aux16[2];
|
|
const uint8_t * s = (const uint8_t *)aux16;
|
|
|
|
float tmp = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
const uint8_t * q = x[i].qs + step;
|
|
const float * y = yy + i*QK_K + step;
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux16[0] = a[0] & 0x0f0f;
|
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
const float d = (float)x[i].dm[0];
|
|
const float m = (float)x[i].dm[1];
|
|
float sum = 0.f;
|
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
|
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
|
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
|
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
|
}
|
|
tmp += sum;
|
|
}
|
|
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
DPCT1110:7: The total declared local variable size in device function
|
|
dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
|
|
pressure. Consult with your hardware vendor to find the total register size
|
|
available and adjust the code, or use smaller sub-group size to avoid high
|
|
register pressure.
|
|
*/
|
|
static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
|
|
const float *__restrict__ yy,
|
|
float *__restrict__ dst,
|
|
const int ncols,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const int row = item_ct1.get_group(2);
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
#if QK_K == 256
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int tid = item_ct1.get_local_id(2) / 2; // 0...15
|
|
const int ix = item_ct1.get_local_id(2) % 2;
|
|
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid - 4*il;// 0...3
|
|
const int n = 2;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
const uint8_t hm1 = 1 << (2*im);
|
|
const uint8_t hm2 = hm1 << 4;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
uint16_t q16[8];
|
|
const uint8_t * q4 = (const uint8_t *)q16;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
|
|
|
const uint8_t * ql1 = x[i].qs + q_offset;
|
|
const uint8_t * qh = x[i].qh + l0;
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = x[i].dm[0];
|
|
const float dmin = x[i].dm[1];
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
const uint16_t * q1 = (const uint16_t *)ql1;
|
|
const uint16_t * q2 = q1 + 32;
|
|
q16[0] = q1[0] & 0x0f0f;
|
|
q16[1] = q1[8] & 0x0f0f;
|
|
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
|
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
|
q16[4] = q2[0] & 0x0f0f;
|
|
q16[5] = q2[8] & 0x0f0f;
|
|
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
|
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum.x() +=
|
|
y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
|
|
y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
|
|
sum.y() +=
|
|
y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
|
|
y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
|
|
sum.z() +=
|
|
y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
|
|
y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
|
|
sum.w() +=
|
|
y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
|
|
y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
|
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
|
}
|
|
tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
|
|
sum.w() * sc[5]) -
|
|
dmin * smin;
|
|
}
|
|
|
|
#else
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
const int im = step/8;
|
|
const int in = step%8;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
const uint8_t * q = x[i].qs + step;
|
|
const int8_t * s = x[i].scales;
|
|
const float * y = yy + i*QK_K + step;
|
|
const float d = x[i].d;
|
|
float sum = 0.f;
|
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
const uint8_t h = x[i].qh[in+j] >> im;
|
|
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
|
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
|
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
|
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
|
}
|
|
tmp += sum;
|
|
}
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (item_ct1.get_local_id(2) == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
|
|
|
#if QK_K == 256
|
|
|
|
const int tid =
|
|
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix =
|
|
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
|
const int is = 0;
|
|
#else
|
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
|
const int is = in / 4;
|
|
#endif
|
|
const int ql_offset = 64*im + l0;
|
|
const int qh_offset = 32*im + l0;
|
|
const int s_offset = 8*im + is;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * ql = x[i].ql + ql_offset;
|
|
const uint8_t * qh = x[i].qh + qh_offset;
|
|
const int8_t * s = x[i].scales + s_offset;
|
|
|
|
const float d = x[i].d;
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
|
tmp += sum;
|
|
#else
|
|
float sum = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
|
}
|
|
tmp += sum;
|
|
#endif
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
|
|
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
|
|
|
|
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + step;
|
|
const uint8_t * ql = x[i].ql + step;
|
|
const uint8_t * qh = x[i].qh + step;
|
|
const int8_t * s = x[i].scales;
|
|
|
|
const float d = x[i+0].d;
|
|
|
|
float sum = 0;
|
|
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
|
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
|
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
|
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
|
}
|
|
tmp += sum;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const sycl::half *x = (const sycl::half *)vx;
|
|
|
|
// automatic half -> float type cast if dfloat == float
|
|
v.x() = x[ib + iqs + 0];
|
|
v.y() = x[ib + iqs + 1];
|
|
}
|
|
|
|
static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
|
const float * x = (const float *) vx;
|
|
|
|
// automatic half -> float type cast if dfloat == float
|
|
v.x() = x[ib + iqs + 0];
|
|
v.y() = x[ib + iqs + 1];
|
|
}
|
|
|
|
static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (ix >= kx_padded) {
|
|
return;
|
|
}
|
|
|
|
const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
|
|
const int i_padded = iy*kx_padded + ix;
|
|
|
|
block_q8_1 * y = (block_q8_1 *) vy;
|
|
|
|
const int ib = i_padded / QK8_1; // block index
|
|
const int iqs = i_padded % QK8_1; // quant index
|
|
|
|
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
|
|
float amax = sycl::fabs((float)xi);
|
|
float sum = xi;
|
|
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
|
|
item_ct1.get_sub_group(), amax, mask));
|
|
sum +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
|
|
}
|
|
|
|
const float d = amax / 127;
|
|
const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
|
|
|
|
y[ib].qs[iqs] = q;
|
|
|
|
if (iqs > 0) {
|
|
return;
|
|
}
|
|
|
|
reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
|
|
reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
|
|
}
|
|
|
|
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
|
static void k_get_rows(
|
|
const void * src0, const int32_t * src1, dst_t * dst,
|
|
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
|
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
|
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
|
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
|
size_t s10, size_t s11, size_t s12,
|
|
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
|
|
|
|
const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
|
|
item_ct1.get_local_id(2)) *
|
|
2;
|
|
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
|
item_ct1.get_local_id(0)) /
|
|
ne12;
|
|
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
|
item_ct1.get_local_id(0)) %
|
|
ne12;
|
|
|
|
if (i00 >= ne00) {
|
|
return;
|
|
}
|
|
|
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
|
|
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
|
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
|
|
|
const int ib = i00/qk; // block index
|
|
const int iqs = (i00%qk)/qr; // quant index
|
|
const int iybs = i00 - i00%qk; // dst block start index
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// dequantize
|
|
dfloat2 v;
|
|
dequantize_kernel(src0_row, ib, iqs, v);
|
|
|
|
dst_row[iybs + iqs + 0] = v.x();
|
|
dst_row[iybs + iqs + y_offset] = v.y();
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static void k_get_rows_float(
|
|
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
|
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
|
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
|
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
|
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
|
size_t s10, size_t s11, size_t s12,
|
|
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
|
|
|
|
const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
|
|
item_ct1.get_local_id(2);
|
|
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
|
item_ct1.get_local_id(0)) /
|
|
ne12;
|
|
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
|
item_ct1.get_local_id(0)) %
|
|
ne12;
|
|
|
|
if (i00 >= ne00) {
|
|
return;
|
|
}
|
|
|
|
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
|
|
|
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
|
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
|
|
|
dst_row[i00] = src0_row[i00];
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
|
static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
2 * item_ct1.get_local_id(2);
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
const int ib = i/qk; // block index
|
|
const int iqs = (i%qk)/qr; // quant index
|
|
const int iybs = i - i%qk; // y block start index
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// dequantize
|
|
dfloat2 v;
|
|
dequantize_kernel(vx, ib, iqs, v);
|
|
|
|
y[iybs + iqs + 0] = v.x();
|
|
y[iybs + iqs + y_offset] = v.y();
|
|
}
|
|
|
|
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
|
|
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
|
|
|
|
#define VDR_Q4_0_Q8_1_MMVQ 2
|
|
#define VDR_Q4_0_Q8_1_MMQ 4
|
|
|
|
template <int vdr>
|
|
static __dpct_inline__ float vec_dot_q4_0_q8_1_impl(const int *v, const int *u,
|
|
const float &d4,
|
|
const sycl::half2 &ds8) {
|
|
int sumi = 0;
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
|
// SIMD dot product of quantized values
|
|
sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
|
|
sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
|
|
}
|
|
|
|
const sycl::float2 ds8f =
|
|
ds8.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
// second part effectively subtracts 8 from each quant value
|
|
return d4 * (sumi * ds8f.x() - (8 * vdr / QI4_0) * ds8f.y());
|
|
}
|
|
|
|
#define VDR_Q4_1_Q8_1_MMVQ 2
|
|
#define VDR_Q4_1_Q8_1_MMQ 4
|
|
|
|
template <int vdr>
|
|
static __dpct_inline__ float vec_dot_q4_1_q8_1_impl(const int *v, const int *u,
|
|
const sycl::half2 &dm4,
|
|
const sycl::half2 &ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
|
// SIMD dot product of quantized values
|
|
sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
|
|
sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
|
|
}
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
const sycl::float2 tmp =
|
|
(dm4 * ds8).convert<float, sycl::rounding_mode::automatic>();
|
|
const float d4d8 = tmp.x();
|
|
const float m4s8 = tmp.y();
|
|
#else
|
|
const sycl::float2 dm4f =
|
|
dm4.convert<float, sycl::rounding_mode::automatic>();
|
|
const sycl::float2 ds8f =
|
|
ds8.convert<float, sycl::rounding_mode::automatic>();
|
|
const float d4d8 = dm4f.x() * ds8f.x();
|
|
const float m4s8 = dm4f.y() * ds8f.y();
|
|
#endif // GGML_SYCL_F16
|
|
|
|
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
|
|
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
|
|
}
|
|
|
|
#define VDR_Q5_0_Q8_1_MMVQ 2
|
|
#define VDR_Q5_0_Q8_1_MMQ 4
|
|
|
|
template <int vdr>
|
|
static __dpct_inline__ float
|
|
vec_dot_q5_0_q8_1_impl(const int *vl, const int *vh, const int *u,
|
|
const float &d5, const sycl::half2 &ds8) {
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
sumi = dpct::dp4a(vi0, u[2 * i + 0],
|
|
sumi); // SIMD dot product of quantized values
|
|
|
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
sumi = dpct::dp4a(vi1, u[2 * i + 1],
|
|
sumi); // SIMD dot product of quantized values
|
|
}
|
|
|
|
const sycl::float2 ds8f =
|
|
ds8.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
// second part effectively subtracts 16 from each quant value
|
|
return d5 * (sumi * ds8f.x() - (16 * vdr / QI5_0) * ds8f.y());
|
|
}
|
|
|
|
#define VDR_Q5_1_Q8_1_MMVQ 2
|
|
#define VDR_Q5_1_Q8_1_MMQ 4
|
|
|
|
template <int vdr>
|
|
static __dpct_inline__ float
|
|
vec_dot_q5_1_q8_1_impl(const int *vl, const int *vh, const int *u,
|
|
const sycl::half2 &dm5, const sycl::half2 &ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
sumi = dpct::dp4a(vi0, u[2 * i + 0],
|
|
sumi); // SIMD dot product of quantized values
|
|
|
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
sumi = dpct::dp4a(vi1, u[2 * i + 1],
|
|
sumi); // SIMD dot product of quantized values
|
|
}
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
const sycl::float2 tmp =
|
|
(dm5 * ds8).convert<float, sycl::rounding_mode::automatic>();
|
|
const float d5d8 = tmp.x();
|
|
const float m5s8 = tmp.y();
|
|
|
|
|
|
#else
|
|
const sycl::float2 dm5f =
|
|
dm5.convert<float, sycl::rounding_mode::automatic>();
|
|
const sycl::float2 ds8f =
|
|
ds8.convert<float, sycl::rounding_mode::automatic>();
|
|
const float d5d8 = dm5f.x() * ds8f.x();
|
|
const float m5s8 = dm5f.y() * ds8f.y();
|
|
#endif // GGML_SYCL_F16
|
|
|
|
// scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
|
|
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
|
|
}
|
|
|
|
#define VDR_Q8_0_Q8_1_MMVQ 2
|
|
#define VDR_Q8_0_Q8_1_MMQ 8
|
|
|
|
template <int vdr>
|
|
static __dpct_inline__ float vec_dot_q8_0_q8_1_impl(const int *v, const int *u,
|
|
const float &d8_0,
|
|
const float &d8_1) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
// SIMD dot product of quantized values
|
|
sumi = dpct::dp4a(v[i], u[i], sumi);
|
|
}
|
|
|
|
return d8_0*d8_1 * sumi;
|
|
}
|
|
|
|
template <int vdr>
|
|
static __dpct_inline__ float vec_dot_q8_1_q8_1_impl(const int *v, const int *u,
|
|
const sycl::half2 &dm8,
|
|
const sycl::half2 &ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
// SIMD dot product of quantized values
|
|
sumi = dpct::dp4a(v[i], u[i], sumi);
|
|
}
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
const sycl::float2 tmp =
|
|
(dm8 * ds8).convert<float, sycl::rounding_mode::automatic>();
|
|
const float d8d8 = tmp.x();
|
|
const float m8s8 = tmp.y();
|
|
#else
|
|
const sycl::float2 dm8f =
|
|
dm8.convert<float, sycl::rounding_mode::automatic>();
|
|
const sycl::float2 ds8f =
|
|
ds8.convert<float, sycl::rounding_mode::automatic>();
|
|
const float d8d8 = dm8f.x() * ds8f.x();
|
|
const float m8s8 = dm8f.y() * ds8f.y();
|
|
#endif // GGML_SYCL_F16
|
|
|
|
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
|
|
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
|
|
}
|
|
|
|
#define VDR_Q2_K_Q8_1_MMVQ 1
|
|
#define VDR_Q2_K_Q8_1_MMQ 2
|
|
|
|
// contiguous v/x values
|
|
static __dpct_inline__ float vec_dot_q2_K_q8_1_impl_mmvq(
|
|
const int &v, const int *__restrict__ u, const uint8_t *__restrict__ scales,
|
|
const sycl::half2 &dm2, const float *__restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR2_K; ++i) {
|
|
const int sc = scales[2*i];
|
|
|
|
const int vi = (v >> (2*i)) & 0x03030303;
|
|
|
|
sumf_d +=
|
|
d8[i] * (dpct::dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
|
|
|
|
// fill int with 4x m
|
|
int m = sc >> 4;
|
|
m |= m << 8;
|
|
m |= m << 16;
|
|
sumf_m += d8[i] *
|
|
dpct::dp4a(
|
|
m, u[i],
|
|
0); // multiply constant q2_K part with sum of q8_1 values
|
|
}
|
|
|
|
const sycl::float2 dm2f =
|
|
dm2.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
return dm2f.x() * sumf_d - dm2f.y() * sumf_m;
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __dpct_inline__ float
|
|
vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
|
|
const uint8_t *__restrict__ scales,
|
|
const sycl::half2 &dm2, const float &d8) {
|
|
|
|
int sumi_d = 0;
|
|
int sumi_m = 0;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
|
|
int sumi_d_sc = 0;
|
|
|
|
const int sc = scales[i0 / (QI8_1/2)];
|
|
|
|
// fill int with 4x m
|
|
int m = sc >> 4;
|
|
m |= m << 8;
|
|
m |= m << 16;
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
|
|
sumi_m = dpct::dp4a(m, u[i],
|
|
sumi_m); // multiply sum of q8_1 values with m
|
|
}
|
|
|
|
sumi_d += sumi_d_sc * (sc & 0xF);
|
|
}
|
|
|
|
const sycl::float2 dm2f =
|
|
dm2.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m);
|
|
}
|
|
|
|
#define VDR_Q3_K_Q8_1_MMVQ 1
|
|
#define VDR_Q3_K_Q8_1_MMQ 2
|
|
|
|
// contiguous v/x values
|
|
static __dpct_inline__ float vec_dot_q3_K_q8_1_impl_mmvq(
|
|
const int &vl, const int &vh, const int *__restrict__ u,
|
|
const uint8_t *__restrict__ scales, const int &scale_offset,
|
|
const float &d3, const float *__restrict__ d8) {
|
|
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR3_K; ++i) {
|
|
const int isc = scale_offset + 2*i;
|
|
|
|
const int isc_low = isc % (QK_K/32);
|
|
const int sc_shift_low = 4 * (isc / (QK_K/32));
|
|
const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
|
|
|
|
const int isc_high = isc % (QK_K/64);
|
|
const int sc_shift_high = 2 * (isc / (QK_K/64));
|
|
const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
|
|
|
|
const int sc = (sc_low | sc_high) - 32;
|
|
|
|
const int vil = (vl >> (2*i)) & 0x03030303;
|
|
|
|
const int vih = ((vh >> i) << 2) & 0x04040404;
|
|
|
|
const int vi =
|
|
dpct::vectorized_binary<sycl::char4>(vil, vih, dpct::sub_sat());
|
|
|
|
sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
}
|
|
|
|
return d3 * sumf;
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __dpct_inline__ float
|
|
vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
|
|
const int8_t *__restrict__ scales, const float &d3,
|
|
const float &d8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
|
|
int sumi_sc = 0;
|
|
|
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product
|
|
}
|
|
|
|
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
|
|
}
|
|
|
|
return d3*d8 * sumi;
|
|
}
|
|
|
|
#define VDR_Q4_K_Q8_1_MMVQ 2
|
|
#define VDR_Q4_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_vmmq(
|
|
const int *__restrict__ v, const int *__restrict__ u,
|
|
const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
|
|
const sycl::half2 &dm4, const float *__restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR4_K; ++i) {
|
|
const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
|
|
const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int dot1 =
|
|
dpct::dp4a(v1i, u[2 * i + 1],
|
|
dpct::dp4a(v0i, u[2 * i + 0], 0)); // SIMD dot product
|
|
const int dot2 =
|
|
dpct::dp4a(0x01010101, u[2 * i + 1],
|
|
dpct::dp4a(0x01010101, u[2 * i + 0], 0)); // sum of u
|
|
|
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
|
sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
|
|
}
|
|
|
|
const sycl::float2 dm4f =
|
|
dm4.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq(
|
|
const int *__restrict__ v, const int *__restrict__ u,
|
|
const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
|
|
const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
|
|
int sumi_d = 0;
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < QI8_1; ++j) {
|
|
sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F,
|
|
u[i * QI8_1 + j], sumi_d); // SIMD dot product
|
|
}
|
|
|
|
const sycl::float2 ds8f =
|
|
ds8[i].convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
sumf_d += ds8f.x() * (sc[i] * sumi_d);
|
|
sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
|
|
}
|
|
|
|
const sycl::float2 dm4f =
|
|
dm4.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
|
|
}
|
|
|
|
#define VDR_Q5_K_Q8_1_MMVQ 2
|
|
#define VDR_Q5_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_vmmq(
|
|
const int *__restrict__ vl, const int *__restrict__ vh,
|
|
const int *__restrict__ u, const uint8_t *__restrict__ sc,
|
|
const uint8_t *__restrict__ m, const sycl::half2 &dm5,
|
|
const float *__restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K; ++i) {
|
|
const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
|
|
const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
|
|
const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
|
|
|
|
const int v0i = vl0i | vh0i;
|
|
const int v1i = vl1i | vh1i;
|
|
|
|
const int dot1 =
|
|
dpct::dp4a(v0i, u[2 * i + 0],
|
|
dpct::dp4a(v1i, u[2 * i + 1], 0)); // SIMD dot product
|
|
const int dot2 =
|
|
dpct::dp4a(0x01010101, u[2 * i + 0],
|
|
dpct::dp4a(0x01010101, u[2 * i + 1], 0)); // sum of u
|
|
|
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
|
sumf_m += d8[i] * (dot2 * m[i]);
|
|
|
|
}
|
|
|
|
const sycl::float2 dm5f =
|
|
dm5.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
return dm5f.x() * sumf_d - dm5f.y() * sumf_m;
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq(
|
|
const int *__restrict__ v, const int *__restrict__ u,
|
|
const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
|
|
const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
|
|
int sumi_d = 0;
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < QI8_1; ++j) {
|
|
sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j],
|
|
sumi_d); // SIMD dot product
|
|
}
|
|
|
|
const sycl::float2 ds8f =
|
|
ds8[i].convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
sumf_d += ds8f.x() * (sc[i] * sumi_d);
|
|
sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
|
|
}
|
|
|
|
const sycl::float2 dm4f =
|
|
dm4.convert<float, sycl::rounding_mode::automatic>();
|
|
|
|
return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
|
|
}
|
|
|
|
#define VDR_Q6_K_Q8_1_MMVQ 1
|
|
#define VDR_Q6_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __dpct_inline__ float
|
|
vec_dot_q6_K_q8_1_impl_mmvq(const int &vl, const int &vh,
|
|
const int *__restrict__ u,
|
|
const int8_t *__restrict__ scales, const float &d,
|
|
const float *__restrict__ d8) {
|
|
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR6_K; ++i) {
|
|
const int sc = scales[4*i];
|
|
|
|
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
|
|
|
|
const int vi = dpct::vectorized_binary<sycl::char4>(
|
|
(vil | vih), 0x20202020, dpct::sub_sat()); // vi = (vil | vih) - 32
|
|
|
|
sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
}
|
|
|
|
return d*sumf;
|
|
}
|
|
|
|
// contiguous u/y values
|
|
static __dpct_inline__ float
|
|
vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
|
|
const int8_t *__restrict__ sc, const float &d6,
|
|
const float *__restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
|
|
sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + 2; ++i) {
|
|
sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0],
|
|
sumi_d.x()); // SIMD dot product
|
|
sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1],
|
|
sumi_d.x()); // SIMD dot product
|
|
|
|
sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4],
|
|
sumi_d.y()); // SIMD dot product
|
|
sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5],
|
|
sumi_d.y()); // SIMD dot product
|
|
}
|
|
|
|
sumf_d += d8[i0 / 4] *
|
|
(sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y());
|
|
}
|
|
|
|
return d6 * sumf_d;
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q4_0_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
|
|
|
|
int v[VDR_Q4_0_Q8_1_MMVQ];
|
|
int u[2*VDR_Q4_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
|
|
}
|
|
|
|
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_qs_q4_0, float *tile_x_d_q4_0) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
*x_ql = tile_x_qs_q4_0;
|
|
*x_dm = (sycl::half2 *)tile_x_d_q4_0;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh; (void)x_sc;
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI4_0;
|
|
const int kqsx = k % QI4_0;
|
|
|
|
const block_q4_0 * bx0 = (const block_q4_0 *) vx;
|
|
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
|
// x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
|
|
int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
const float * x_dmf = (const float *) x_dm;
|
|
|
|
int u[2*VDR_Q4_0_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
|
|
}
|
|
|
|
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
|
|
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
|
|
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q4_1_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
|
|
|
|
int v[VDR_Q4_1_Q8_1_MMVQ];
|
|
int u[2*VDR_Q4_1_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
|
|
}
|
|
|
|
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
*x_ql = tile_x_qs_q4_1;
|
|
*x_dm = tile_x_dm_q4_1;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI4_1;
|
|
const int kqsx = k % QI4_1;
|
|
|
|
const block_q4_1 * bx0 = (const block_q4_1 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
|
|
int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
|
|
int u[2*VDR_Q4_1_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
|
|
}
|
|
|
|
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
|
|
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
|
|
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q5_0_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
|
|
|
|
int vl[VDR_Q5_0_Q8_1_MMVQ];
|
|
int vh[VDR_Q5_0_Q8_1_MMVQ];
|
|
int u[2*VDR_Q5_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
|
|
vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
|
|
vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
|
|
}
|
|
|
|
return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_ql_q5_0, float *tile_x_d_q5_0) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
*x_ql = tile_x_ql_q5_0;
|
|
*x_dm = (sycl::half2 *)tile_x_d_q5_0;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI5_0;
|
|
const int kqsx = k % QI5_0;
|
|
|
|
const block_q5_0 * bx0 = (const block_q5_0 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
const int ql = get_int_from_uint8(bxi->qs, kqsx);
|
|
const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
|
|
|
|
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
|
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
|
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
|
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
|
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
|
qs0 = dpct::vectorized_binary<sycl::char4>(
|
|
qs0, 0x10101010, dpct::sub_sat()); // subtract 16
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
|
|
|
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
|
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
|
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
|
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
|
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
|
qs1 = dpct::vectorized_binary<sycl::char4>(
|
|
qs1, 0x10101010, dpct::sub_sat()); // subtract 16
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
|
|
int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
int u[2*VDR_Q5_0_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
|
}
|
|
|
|
return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
|
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q5_1_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
|
|
|
|
int vl[VDR_Q5_1_Q8_1_MMVQ];
|
|
int vh[VDR_Q5_1_Q8_1_MMVQ];
|
|
int u[2*VDR_Q5_1_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
|
|
vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
|
|
vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
|
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
|
|
}
|
|
|
|
return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
*x_ql = tile_x_ql_q5_1;
|
|
*x_dm = tile_x_dm_q5_1;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI5_1;
|
|
const int kqsx = k % QI5_1;
|
|
|
|
const block_q5_1 * bx0 = (const block_q5_1 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
|
|
|
|
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
|
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
|
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
|
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
|
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
|
|
|
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
|
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
|
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
|
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
|
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
|
|
int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
|
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
|
|
|
|
int u[2*VDR_Q5_1_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
|
|
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
|
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
|
|
}
|
|
|
|
return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
|
|
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q8_0_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
|
|
|
|
int v[VDR_Q8_0_Q8_1_MMVQ];
|
|
int u[VDR_Q8_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
|
|
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
|
}
|
|
|
|
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d,
|
|
bq8_1->ds[0]);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_qs_q8_0, float *tile_x_d_q8_0) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
*x_ql = tile_x_qs_q8_0;
|
|
*x_dm = (sycl::half2 *)tile_x_d_q8_0;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI8_0;
|
|
const int kqsx = k % QI8_0;
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
const block_q8_0 * bx0 = (const block_q8_0 *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
|
|
int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh; (void)x_sc;
|
|
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
|
|
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
|
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q2_K_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q2_K * bq2_K = (const block_q2_K *) vbq;
|
|
|
|
const int bq8_offset = QR2_K * (iqs / QI8_1);
|
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
|
const uint8_t * scales = bq2_K->scales + scale_offset;
|
|
|
|
const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
|
|
int u[QR2_K];
|
|
float d8[QR2_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR2_K; ++ i) {
|
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
d8[i] = bq8_1[bq8_offset + i].ds[0];
|
|
}
|
|
|
|
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K,
|
|
int *tile_x_sc_q2_K) {
|
|
(void)x_qh;
|
|
|
|
*x_ql = tile_x_ql_q2_K;
|
|
*x_dm = tile_x_dm_q2_K;
|
|
*x_sc = tile_x_sc_q2_K;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI2_K;
|
|
const int kqsx = k % QI2_K;
|
|
|
|
const block_q2_K * bx0 = (const block_q2_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
|
|
int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
|
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
|
|
|
|
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh;
|
|
|
|
const int kbx = k / QI2_K;
|
|
const int ky = (k % QI2_K) * QR2_K;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
|
|
|
|
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
|
|
const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
|
|
v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
|
}
|
|
|
|
const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
|
|
|
|
const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
|
|
return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q3_K_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q3_K * bq3_K = (const block_q3_K *) vbq;
|
|
|
|
const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
|
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
|
const float d = bq3_K->d;
|
|
|
|
const int vl = get_int_from_uint8(bq3_K->qs, iqs);
|
|
|
|
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
|
const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
|
|
|
|
int u[QR3_K];
|
|
float d8[QR3_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR3_K; ++i) {
|
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
d8[i] = bq8_1[bq8_offset + i].ds[0];
|
|
}
|
|
|
|
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K,
|
|
int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) {
|
|
|
|
*x_ql = tile_x_ql_q3_K;
|
|
*x_dm = tile_x_dm_q3_K;
|
|
*x_qh = tile_x_qh_q3_K;
|
|
*x_sc = tile_x_sc_q3_K;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI3_K;
|
|
const int kqsx = k % QI3_K;
|
|
|
|
const block_q3_K * bx0 = (const block_q3_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
|
|
const int kbxd = k % blocks_per_tile_x_row;
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
|
|
int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
|
|
int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
|
|
|
|
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
|
x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
|
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
|
|
|
|
const int ksc = k % (QI3_K/4);
|
|
|
|
const int ksc_low = ksc % (QI3_K/8);
|
|
const int shift_low = 4 * (ksc / (QI3_K/8));
|
|
const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
|
|
|
|
const int ksc_high = QI3_K/8;
|
|
const int shift_high = 2 * ksc;
|
|
const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
|
|
|
|
const int sc = dpct::vectorized_binary<sycl::char4>(
|
|
sc_low | sc_high, 0x20202020, dpct::sub_sat());
|
|
|
|
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
|
|
const int kbx = k / QI3_K;
|
|
const int ky = (k % QI3_K) * QR3_K;
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
|
|
|
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
|
|
|
#pragma unroll
|
|
for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
|
|
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
|
|
const int shift = 2 * ((ky % 32) / 8);
|
|
const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
|
|
|
const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
|
|
const int vlh = (vh << 2) & 0x04040404;
|
|
|
|
v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat());
|
|
}
|
|
|
|
const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
|
|
return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
#ifndef GGML_QKK_64
|
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
|
|
|
int v[2];
|
|
int u[2*QR4_K];
|
|
float d8[QR4_K];
|
|
|
|
// iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
|
|
const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
|
|
|
|
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
|
|
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
|
|
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
|
|
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
|
|
|
|
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
v[0] = q4[0];
|
|
v[1] = q4[4];
|
|
|
|
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
|
|
uint16_t aux[2];
|
|
const int j = bq8_offset/2;
|
|
if (j < 2) {
|
|
aux[0] = scales[j+0] & 0x3f3f;
|
|
aux[1] = scales[j+2] & 0x3f3f;
|
|
} else {
|
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
}
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
const uint8_t * m = sc + 2;
|
|
|
|
for (int i = 0; i < QR4_K; ++i) {
|
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
d8[i] = bq8i->ds[0];
|
|
|
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
u[2*i+0] = q8[0];
|
|
u[2*i+1] = q8[4];
|
|
}
|
|
|
|
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
|
|
|
#else
|
|
|
|
#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
|
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
uint16_t aux16[2];
|
|
const uint8_t * s = (const uint8_t *)aux16;
|
|
|
|
const uint16_t * a = (const uint16_t *)bq4_K->scales;
|
|
aux16[0] = a[0] & 0x0f0f;
|
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
|
|
const float dall = bq4_K->dm[0];
|
|
const float dmin = bq4_K->dm[1];
|
|
|
|
const float d8_1 = __low2float(bq8_1[0].ds);
|
|
const float d8_2 = __low2float(bq8_1[1].ds);
|
|
|
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
|
|
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
|
|
const int v1 = q4[0];
|
|
const int v2 = q4[4];
|
|
|
|
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
|
|
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
|
|
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
|
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
|
|
|
|
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
|
|
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
|
|
|
|
return dall * sumf_d - dmin * sumf_m;
|
|
|
|
#else
|
|
bad_arch();
|
|
#endif // __SYCL_ARCH__ >= VER_4VEC
|
|
|
|
#endif
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K,
|
|
int *tile_x_sc_q4_K) {
|
|
(void)x_qh;
|
|
|
|
*x_ql = tile_x_ql_q4_K;
|
|
*x_dm = tile_x_dm_q4_K;
|
|
*x_sc = tile_x_sc_q4_K;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI4_K; // == 0 if QK_K == 256
|
|
const int kqsx = k % QI4_K; // == k if QK_K == 256
|
|
|
|
const block_q4_K * bx0 = (const block_q4_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
|
|
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
|
|
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
|
|
int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
#if QK_K == 256
|
|
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
|
#else
|
|
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
|
|
#endif
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
|
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
|
|
|
|
const int * scales = (const int *) bxi->scales;
|
|
|
|
const int ksc = k % (WARP_SIZE/8);
|
|
|
|
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
|
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
|
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
|
|
|
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh;
|
|
|
|
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
|
|
|
|
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
|
|
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
|
|
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
#ifndef GGML_QKK_64
|
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
|
|
|
int vl[2];
|
|
int vh[2];
|
|
int u[2*QR5_K];
|
|
float d8[QR5_K];
|
|
|
|
const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
|
|
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
|
|
|
|
vl[0] = ql[0];
|
|
vl[1] = ql[4];
|
|
|
|
vh[0] = qh[0] >> bq8_offset;
|
|
vh[1] = qh[4] >> bq8_offset;
|
|
|
|
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
|
|
uint16_t aux[2];
|
|
const int j = bq8_offset/2;
|
|
if (j < 2) {
|
|
aux[0] = scales[j+0] & 0x3f3f;
|
|
aux[1] = scales[j+2] & 0x3f3f;
|
|
} else {
|
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
}
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
const uint8_t * m = sc + 2;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K; ++i) {
|
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
d8[i] = bq8i->ds[0];
|
|
|
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
u[2*i+0] = q8[0];
|
|
u[2*i+1] = q8[4];
|
|
}
|
|
|
|
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
|
|
|
#else
|
|
|
|
#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
|
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
|
|
|
const int8_t * s = bq5_K->scales;
|
|
|
|
const float d = bq5_K->d;
|
|
|
|
const float d8_1 = __low2half(bq8_1[0].ds);
|
|
const float d8_2 = __low2half(bq8_1[1].ds);
|
|
|
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
|
|
const int * ql = (const int *)bq5_K->qs + (iqs/2);
|
|
const int vl1 = ql[0];
|
|
const int vl2 = ql[4];
|
|
|
|
const int step = 4 * (iqs/2); // 0, 4, 8, 12
|
|
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
|
|
const int in = step%8; // 0, 4, 0, 4
|
|
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
|
|
|
|
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
|
|
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
|
|
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
|
|
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
|
|
|
|
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
|
|
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
|
|
|
|
return d * sumf_d;
|
|
|
|
#else
|
|
bad_arch();
|
|
#endif // __SYCL_ARCH__ >= VER_4VEC
|
|
|
|
#endif
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K,
|
|
int *tile_x_sc_q5_K) {
|
|
(void)x_qh;
|
|
|
|
*x_ql = tile_x_ql_q5_K;
|
|
*x_dm = tile_x_dm_q5_K;
|
|
*x_sc = tile_x_sc_q5_K;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI5_K; // == 0 if QK_K == 256
|
|
const int kqsx = k % QI5_K; // == k if QK_K == 256
|
|
|
|
const block_q5_K * bx0 = (const block_q5_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
const int ky = QR5_K*kqsx;
|
|
|
|
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
|
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
|
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
|
const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
|
|
const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
|
|
const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
|
|
|
|
const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
|
|
const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
|
|
|
|
x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
|
|
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
|
|
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
|
|
int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
#if QK_K == 256
|
|
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
|
#endif
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
|
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
|
|
|
|
const int * scales = (const int *) bxi->scales;
|
|
|
|
const int ksc = k % (WARP_SIZE/8);
|
|
|
|
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
|
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
|
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
|
|
|
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh;
|
|
|
|
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
|
|
|
|
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
|
|
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
|
|
return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
|
|
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
|
|
}
|
|
|
|
static __dpct_inline__ float
|
|
vec_dot_q6_K_q8_1(const void *__restrict__ vbq,
|
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
|
|
|
const block_q6_K * bq6_K = (const block_q6_K *) vbq;
|
|
|
|
const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
|
|
const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
|
|
const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
|
|
|
|
const int vl = get_int_from_uint8(bq6_K->ql, iqs);
|
|
const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
|
|
|
|
const int8_t * scales = bq6_K->scales + scale_offset;
|
|
|
|
int u[QR6_K];
|
|
float d8[QR6_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR6_K; ++i) {
|
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
|
|
d8[i] = bq8_1[bq8_offset + 2 * i].ds[0];
|
|
}
|
|
|
|
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
|
|
}
|
|
|
|
template <int mmq_y>
|
|
static __dpct_inline__ void
|
|
allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
|
|
int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) {
|
|
(void)x_qh;
|
|
|
|
*x_ql = tile_x_ql;
|
|
*x_dm = tile_x_dm;
|
|
*x_sc = tile_x_sc;
|
|
}
|
|
|
|
template <int mmq_y, int nwarps, bool need_check>
|
|
static __dpct_inline__ void
|
|
load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|
sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
|
|
int *__restrict__ x_sc, const int &i_offset, const int &i_max,
|
|
const int &k, const int &blocks_per_row) {
|
|
(void)x_qh;
|
|
|
|
GGML_SYCL_ASSUME(i_offset >= 0);
|
|
GGML_SYCL_ASSUME(i_offset < nwarps);
|
|
GGML_SYCL_ASSUME(k >= 0);
|
|
GGML_SYCL_ASSUME(k < WARP_SIZE);
|
|
|
|
const int kbx = k / QI6_K; // == 0 if QK_K == 256
|
|
const int kqsx = k % QI6_K; // == k if QK_K == 256
|
|
|
|
const block_q6_K * bx0 = (const block_q6_K *) vx;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
|
int i = i0 + i_offset;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
|
|
const int ky = QR6_K*kqsx;
|
|
|
|
const int ql = get_int_from_uint8(bxi->ql, kqsx);
|
|
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
|
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
|
|
|
const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
|
|
const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
|
|
const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
|
|
|
|
const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
|
|
const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
|
|
|
|
x_ql[i * (2 * WARP_SIZE + 1) + kq0] =
|
|
dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020,
|
|
dpct::sub_sat());
|
|
x_ql[i * (2 * WARP_SIZE + 1) + kq1] =
|
|
dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020,
|
|
dpct::sub_sat());
|
|
}
|
|
|
|
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
|
|
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
|
float * x_dmf = (float *) x_dm;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
|
|
int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
|
|
|
x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
|
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
|
|
|
if (need_check) {
|
|
i = sycl::min(i, i_max);
|
|
}
|
|
|
|
const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
|
|
|
|
x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
|
|
}
|
|
}
|
|
|
|
static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat(
|
|
const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
|
|
const int *__restrict__ x_qh, const int *__restrict__ x_sc,
|
|
const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
|
|
const int &i, const int &j, const int &k) {
|
|
(void)x_qh;
|
|
|
|
const float * x_dmf = (const float *) x_dm;
|
|
const float * y_df = (const float *) y_ds;
|
|
|
|
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
|
|
|
|
const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
|
|
const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
|
|
return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
|
|
}
|
|
|
|
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
|
|
int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr,
|
|
vec_dot_q_mul_mat_sycl_t vec_dot>
|
|
/*
|
|
DPCT1110:8: The total declared local variable size in device function mul_mat_q
|
|
exceeds 128 bytes and may cause high register pressure. Consult with your
|
|
hardware vendor to find the total register size available and adjust the code,
|
|
or use smaller sub-group size to avoid high register pressure.
|
|
*/
|
|
static __dpct_inline__ void
|
|
mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy,
|
|
float *__restrict__ dst, const int ncols_x, const int nrows_x,
|
|
const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh,
|
|
int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs,
|
|
sycl::half2 *tile_y_ds) {
|
|
|
|
const block_q_t * x = (const block_q_t *) vx;
|
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
|
const int blocks_per_row_x = ncols_x / qk;
|
|
const int blocks_per_col_y = nrows_y / QK8_1;
|
|
const int blocks_per_warp = WARP_SIZE / qi;
|
|
|
|
const int & ncols_dst = ncols_y;
|
|
|
|
const int row_dst_0 = item_ct1.get_group(2) * mmq_y;
|
|
const int & row_x_0 = row_dst_0;
|
|
|
|
const int col_dst_0 = item_ct1.get_group(1) * mmq_x;
|
|
const int & col_y_0 = col_dst_0;
|
|
|
|
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
|
|
|
|
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
|
|
|
|
load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm,
|
|
tile_x_qh, tile_x_sc, item_ct1.get_local_id(1),
|
|
nrows_x - row_x_0 - 1, item_ct1.get_local_id(2),
|
|
blocks_per_row_x);
|
|
|
|
#pragma unroll
|
|
for (int ir = 0; ir < qr; ++ir) {
|
|
const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2);
|
|
const int kbxd = kqs / QI8_1;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < mmq_x; i += nwarps) {
|
|
const int col_y_eff = dpct::min(
|
|
(unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i),
|
|
ncols_y - 1); // to prevent out-of-bounds memory accesses
|
|
|
|
const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
|
|
|
|
const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE +
|
|
kqs % WARP_SIZE;
|
|
tile_y_qs[index_y] = get_int_from_int8_aligned(
|
|
by0->qs, item_ct1.get_local_id(2) % QI8_1);
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
|
|
const int ids =
|
|
(ids0 + item_ct1.get_local_id(1) * QI8_1 +
|
|
item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) %
|
|
mmq_x;
|
|
const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1);
|
|
const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1);
|
|
|
|
// if the sum is not needed it's faster to transform the scale to f32 ahead of time
|
|
const sycl::half2 *dsi_src =
|
|
&y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) +
|
|
ir * (WARP_SIZE / QI8_1) + kby]
|
|
.ds;
|
|
sycl::half2 *dsi_dst =
|
|
&tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby];
|
|
if (need_sum) {
|
|
*dsi_dst = *dsi_src;
|
|
} else {
|
|
float * dfi_dst = (float *) dsi_dst;
|
|
*dfi_dst = (*dsi_src)[0];
|
|
}
|
|
}
|
|
|
|
/*
|
|
DPCT1118:9: SYCL group functions and algorithms must be encountered
|
|
in converged control flow. You may need to adjust the code.
|
|
*/
|
|
/*
|
|
DPCT1065:56: Consider replacing sycl::nd_item::barrier() with
|
|
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
|
better performance if there is no access to global memory.
|
|
*/
|
|
item_ct1.barrier();
|
|
|
|
// #pragma unroll // unrolling this loop causes too much register pressure
|
|
for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
|
|
#pragma unroll
|
|
for (int j = 0; j < mmq_x; j += nwarps) {
|
|
#pragma unroll
|
|
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
|
sum[i / WARP_SIZE][j / nwarps] += vec_dot(
|
|
tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
|
|
tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i,
|
|
item_ct1.get_local_id(1) + j, k);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
DPCT1118:10: SYCL group functions and algorithms must be encountered
|
|
in converged control flow. You may need to adjust the code.
|
|
*/
|
|
/*
|
|
DPCT1065:57: Consider replacing sycl::nd_item::barrier() with
|
|
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
|
better performance if there is no access to global memory.
|
|
*/
|
|
item_ct1.barrier();
|
|
}
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < mmq_x; j += nwarps) {
|
|
const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1);
|
|
|
|
if (col_dst >= ncols_dst) {
|
|
return;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
|
const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i;
|
|
|
|
if (row_dst >= nrows_dst) {
|
|
continue;
|
|
}
|
|
|
|
dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
|
|
}
|
|
}
|
|
}
|
|
|
|
#define MMQ_X_Q4_0_RDNA2 64
|
|
#define MMQ_Y_Q4_0_RDNA2 128
|
|
#define NWARPS_Q4_0_RDNA2 8
|
|
#define MMQ_X_Q4_0_RDNA1 64
|
|
#define MMQ_Y_Q4_0_RDNA1 64
|
|
#define NWARPS_Q4_0_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q4_0_AMPERE 4
|
|
#define MMQ_Y_Q4_0_AMPERE 32
|
|
#define NWARPS_Q4_0_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q4_0_AMPERE 64
|
|
#define MMQ_Y_Q4_0_AMPERE 128
|
|
#define NWARPS_Q4_0_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q4_0_PASCAL 64
|
|
#define MMQ_Y_Q4_0_PASCAL 64
|
|
#define NWARPS_Q4_0_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q4_0(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0,
|
|
int *tile_y_qs, sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
|
|
const int mmq_x = MMQ_X_Q4_0_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q4_0_AMPERE;
|
|
const int nwarps = NWARPS_Q4_0_AMPERE;
|
|
allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_qs_q4_0, tile_x_d_q4_0);
|
|
mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ,
|
|
vec_dot_q4_0_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q4_1_RDNA2 64
|
|
#define MMQ_Y_Q4_1_RDNA2 128
|
|
#define NWARPS_Q4_1_RDNA2 8
|
|
#define MMQ_X_Q4_1_RDNA1 64
|
|
#define MMQ_Y_Q4_1_RDNA1 64
|
|
#define NWARPS_Q4_1_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q4_1_AMPERE 4
|
|
#define MMQ_Y_Q4_1_AMPERE 32
|
|
#define NWARPS_Q4_1_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q4_1_AMPERE 64
|
|
#define MMQ_Y_Q4_1_AMPERE 128
|
|
#define NWARPS_Q4_1_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q4_1_PASCAL 64
|
|
#define MMQ_Y_Q4_1_PASCAL 64
|
|
#define NWARPS_Q4_1_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q4_1(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1,
|
|
sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q4_1_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q4_1_AMPERE;
|
|
const int nwarps = NWARPS_Q4_1_AMPERE;
|
|
allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_qs_q4_1, tile_x_dm_q4_1);
|
|
mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ,
|
|
vec_dot_q4_1_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q5_0_RDNA2 64
|
|
#define MMQ_Y_Q5_0_RDNA2 128
|
|
#define NWARPS_Q5_0_RDNA2 8
|
|
#define MMQ_X_Q5_0_RDNA1 64
|
|
#define MMQ_Y_Q5_0_RDNA1 64
|
|
#define NWARPS_Q5_0_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q5_0_AMPERE 4
|
|
#define MMQ_Y_Q5_0_AMPERE 32
|
|
#define NWARPS_Q5_0_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q5_0_AMPERE 128
|
|
#define MMQ_Y_Q5_0_AMPERE 64
|
|
#define NWARPS_Q5_0_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q5_0_PASCAL 64
|
|
#define MMQ_Y_Q5_0_PASCAL 64
|
|
#define NWARPS_Q5_0_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q5_0(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0,
|
|
int *tile_y_qs, sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q5_0_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q5_0_AMPERE;
|
|
const int nwarps = NWARPS_Q5_0_AMPERE;
|
|
allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_ql_q5_0, tile_x_d_q5_0);
|
|
mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ,
|
|
vec_dot_q5_0_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q5_1_RDNA2 64
|
|
#define MMQ_Y_Q5_1_RDNA2 128
|
|
#define NWARPS_Q5_1_RDNA2 8
|
|
#define MMQ_X_Q5_1_RDNA1 64
|
|
#define MMQ_Y_Q5_1_RDNA1 64
|
|
#define NWARPS_Q5_1_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q5_1_AMPERE 4
|
|
#define MMQ_Y_Q5_1_AMPERE 32
|
|
#define NWARPS_Q5_1_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q5_1_AMPERE 128
|
|
#define MMQ_Y_Q5_1_AMPERE 64
|
|
#define NWARPS_Q5_1_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q5_1_PASCAL 64
|
|
#define MMQ_Y_Q5_1_PASCAL 64
|
|
#define NWARPS_Q5_1_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q5_1(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1,
|
|
sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q5_1_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q5_1_AMPERE;
|
|
const int nwarps = NWARPS_Q5_1_AMPERE;
|
|
allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_ql_q5_1, tile_x_dm_q5_1);
|
|
mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ,
|
|
vec_dot_q5_1_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q8_0_RDNA2 64
|
|
#define MMQ_Y_Q8_0_RDNA2 128
|
|
#define NWARPS_Q8_0_RDNA2 8
|
|
#define MMQ_X_Q8_0_RDNA1 64
|
|
#define MMQ_Y_Q8_0_RDNA1 64
|
|
#define NWARPS_Q8_0_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q8_0_AMPERE 4
|
|
#define MMQ_Y_Q8_0_AMPERE 32
|
|
#define NWARPS_Q8_0_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q8_0_AMPERE 128
|
|
#define MMQ_Y_Q8_0_AMPERE 64
|
|
#define NWARPS_Q8_0_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q8_0_PASCAL 64
|
|
#define MMQ_Y_Q8_0_PASCAL 64
|
|
#define NWARPS_Q8_0_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q8_0(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0,
|
|
int *tile_y_qs, sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q8_0_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q8_0_AMPERE;
|
|
const int nwarps = NWARPS_Q8_0_AMPERE;
|
|
allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_qs_q8_0, tile_x_d_q8_0);
|
|
mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ,
|
|
vec_dot_q8_0_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q2_K_RDNA2 64
|
|
#define MMQ_Y_Q2_K_RDNA2 128
|
|
#define NWARPS_Q2_K_RDNA2 8
|
|
#define MMQ_X_Q2_K_RDNA1 128
|
|
#define MMQ_Y_Q2_K_RDNA1 32
|
|
#define NWARPS_Q2_K_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q2_K_AMPERE 4
|
|
#define MMQ_Y_Q2_K_AMPERE 32
|
|
#define NWARPS_Q2_K_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q2_K_AMPERE 64
|
|
#define MMQ_Y_Q2_K_AMPERE 128
|
|
#define NWARPS_Q2_K_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q2_K_PASCAL 64
|
|
#define MMQ_Y_Q2_K_PASCAL 64
|
|
#define NWARPS_Q2_K_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q2_K(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K,
|
|
sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs,
|
|
sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q2_K_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q2_K_AMPERE;
|
|
const int nwarps = NWARPS_Q2_K_AMPERE;
|
|
allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K);
|
|
mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ,
|
|
vec_dot_q2_K_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q3_K_RDNA2 128
|
|
#define MMQ_Y_Q3_K_RDNA2 64
|
|
#define NWARPS_Q3_K_RDNA2 8
|
|
#define MMQ_X_Q3_K_RDNA1 32
|
|
#define MMQ_Y_Q3_K_RDNA1 128
|
|
#define NWARPS_Q3_K_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q3_K_AMPERE 4
|
|
#define MMQ_Y_Q3_K_AMPERE 32
|
|
#define NWARPS_Q3_K_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q3_K_AMPERE 128
|
|
#define MMQ_Y_Q3_K_AMPERE 128
|
|
#define NWARPS_Q3_K_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q3_K_PASCAL 64
|
|
#define MMQ_Y_Q3_K_PASCAL 64
|
|
#define NWARPS_Q3_K_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q3_K(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K,
|
|
sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K,
|
|
int *tile_y_qs, sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q3_K_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q3_K_AMPERE;
|
|
const int nwarps = NWARPS_Q3_K_AMPERE;
|
|
allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K,
|
|
tile_x_sc_q3_K);
|
|
mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ,
|
|
vec_dot_q3_K_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q4_K_RDNA2 64
|
|
#define MMQ_Y_Q4_K_RDNA2 128
|
|
#define NWARPS_Q4_K_RDNA2 8
|
|
#define MMQ_X_Q4_K_RDNA1 32
|
|
#define MMQ_Y_Q4_K_RDNA1 64
|
|
#define NWARPS_Q4_K_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q4_K_AMPERE 4
|
|
#define MMQ_Y_Q4_K_AMPERE 32
|
|
#define NWARPS_Q4_K_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q4_K_AMPERE 64
|
|
#define MMQ_Y_Q4_K_AMPERE 128
|
|
#define NWARPS_Q4_K_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q4_K_PASCAL 64
|
|
#define MMQ_Y_Q4_K_PASCAL 64
|
|
#define NWARPS_Q4_K_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q4_K(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K,
|
|
sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs,
|
|
sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q4_K_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q4_K_AMPERE;
|
|
const int nwarps = NWARPS_Q4_K_AMPERE;
|
|
allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K);
|
|
mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ,
|
|
vec_dot_q4_K_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q5_K_RDNA2 64
|
|
#define MMQ_Y_Q5_K_RDNA2 128
|
|
#define NWARPS_Q5_K_RDNA2 8
|
|
#define MMQ_X_Q5_K_RDNA1 32
|
|
#define MMQ_Y_Q5_K_RDNA1 64
|
|
#define NWARPS_Q5_K_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q5_K_AMPERE 4
|
|
#define MMQ_Y_Q5_K_AMPERE 32
|
|
#define NWARPS_Q5_K_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q5_K_AMPERE 64
|
|
#define MMQ_Y_Q5_K_AMPERE 128
|
|
#define NWARPS_Q5_K_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q5_K_PASCAL 64
|
|
#define MMQ_Y_Q5_K_PASCAL 64
|
|
#define NWARPS_Q5_K_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q5_K(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K,
|
|
sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs,
|
|
sycl::half2 *tile_y_ds) {
|
|
int * tile_x_ql = nullptr;
|
|
sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q5_K_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q5_K_AMPERE;
|
|
const int nwarps = NWARPS_Q5_K_AMPERE;
|
|
allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K);
|
|
mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ,
|
|
vec_dot_q5_K_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
#define MMQ_X_Q6_K_RDNA2 64
|
|
#define MMQ_Y_Q6_K_RDNA2 128
|
|
#define NWARPS_Q6_K_RDNA2 8
|
|
#define MMQ_X_Q6_K_RDNA1 32
|
|
#define MMQ_Y_Q6_K_RDNA1 64
|
|
#define NWARPS_Q6_K_RDNA1 8
|
|
#if defined(SYCL_USE_XMX)
|
|
#define MMQ_X_Q6_K_AMPERE 4
|
|
#define MMQ_Y_Q6_K_AMPERE 32
|
|
#define NWARPS_Q6_K_AMPERE 4
|
|
#else
|
|
#define MMQ_X_Q6_K_AMPERE 64
|
|
#define MMQ_Y_Q6_K_AMPERE 64
|
|
#define NWARPS_Q6_K_AMPERE 4
|
|
#endif
|
|
#define MMQ_X_Q6_K_PASCAL 64
|
|
#define MMQ_Y_Q6_K_PASCAL 64
|
|
#define NWARPS_Q6_K_PASCAL 8
|
|
|
|
template <bool need_check> static void
|
|
mul_mat_q6_K(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
|
|
const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm,
|
|
int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) {
|
|
// int * tile_x_ql = nullptr;
|
|
// sycl::half2 *tile_x_dm = nullptr;
|
|
int * tile_x_qh = nullptr;
|
|
// int * tile_x_sc = nullptr;
|
|
|
|
//sycl_todo: change according to hardware
|
|
const int mmq_x = MMQ_X_Q6_K_AMPERE;
|
|
const int mmq_y = MMQ_Y_Q6_K_AMPERE;
|
|
const int nwarps = NWARPS_Q6_K_AMPERE;
|
|
allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
|
|
tile_x_ql, tile_x_dm, tile_x_sc);
|
|
mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
|
|
load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ,
|
|
vec_dot_q6_K_q8_1_mul_mat>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
|
|
tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
|
|
}
|
|
|
|
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
|
|
static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
|
|
if (row >= nrows) {
|
|
return;
|
|
}
|
|
|
|
const int blocks_per_row = ncols / qk;
|
|
const int blocks_per_warp = vdr * WARP_SIZE / qi;
|
|
|
|
// partial sum for each thread
|
|
float tmp = 0.0f;
|
|
|
|
const block_q_t * x = (const block_q_t *) vx;
|
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
|
for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
|
|
const int ibx = row * blocks_per_row + i +
|
|
item_ct1.get_local_id(2) / (qi / vdr); // x block index
|
|
|
|
const int iby = (i + item_ct1.get_local_id(2) / (qi / vdr)) *
|
|
(qk / QK8_1); // y block index that aligns with ibx
|
|
|
|
const int iqs =
|
|
vdr *
|
|
(item_ct1.get_local_id(2) %
|
|
(qi / vdr)); // x block quant index when casting the quants to int
|
|
|
|
tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (item_ct1.get_local_id(2) == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
|
static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
// qk = quantized weights per x block
|
|
// qr = number of quantized weights per data value in x block
|
|
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
|
|
if (row >= nrows) {
|
|
return;
|
|
}
|
|
|
|
const int tid = item_ct1.get_local_id(2);
|
|
|
|
const int iter_stride = 2*GGML_SYCL_DMMV_X;
|
|
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// partial sum for each thread
|
|
#ifdef GGML_SYCL_F16
|
|
sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
|
#else
|
|
float tmp = 0.0f;
|
|
#endif // GGML_SYCL_F16
|
|
|
|
for (int i = 0; i < ncols; i += iter_stride) {
|
|
const int col = i + vals_per_iter*tid;
|
|
const int ib = (row*ncols + col)/qk; // x block index
|
|
const int iqs = (col%qk)/qr; // x quant index
|
|
const int iybs = col - col%qk; // y block start index
|
|
|
|
// processing >2 values per i iter is faster for fast GPUs
|
|
#pragma unroll
|
|
for (int j = 0; j < vals_per_iter; j += 2) {
|
|
// process 2 vals per j iter
|
|
|
|
// dequantize
|
|
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
|
dfloat2 v;
|
|
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
|
|
|
// matrix multiplication
|
|
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
|
#ifdef GGML_SYCL_F16
|
|
dfloat2 t1{y[iybs + iqs + j / qr + 0],
|
|
y[iybs + iqs + j / qr + y_offset]};
|
|
|
|
tmp += v * t1;
|
|
#else
|
|
tmp += v.x() * y[iybs + iqs + j / qr + 0];
|
|
tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
|
|
#endif // GGML_SYCL_F16
|
|
}
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
#ifdef GGML_SYCL_F16
|
|
dst[row] = tmp.x() + tmp.y();
|
|
#else
|
|
dst[row] = tmp;
|
|
#endif // GGML_SYCL_F16
|
|
}
|
|
}
|
|
|
|
static void mul_mat_p021_f16_f32(
|
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const sycl::half *x = (const sycl::half *)vx;
|
|
|
|
const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
|
item_ct1.get_local_id(0);
|
|
const int channel_x = channel / (nchannels_y / nchannels_x);
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x;
|
|
col_x0 += item_ct1.get_local_range(2)) {
|
|
const int col_x = col_x0 + item_ct1.get_local_id(2);
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
// x is transposed and permuted
|
|
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
|
|
const float xi =
|
|
sycl::vec<sycl::half, 1>(x[ix])
|
|
.convert<float, sycl::rounding_mode::automatic>()[0];
|
|
|
|
const int row_y = col_x;
|
|
|
|
|
|
// y is not transposed but permuted
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// dst is not transposed and not permuted
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (item_ct1.get_local_id(2) == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
|
|
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const sycl::half *x = (const sycl::half *)vx;
|
|
|
|
const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
|
item_ct1.get_local_id(0);
|
|
const int channel_x = channel / channel_x_divisor;
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x;
|
|
col_x0 += item_ct1.get_local_range(2)) {
|
|
const int col_x = col_x0 + item_ct1.get_local_id(2);
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
const int row_y = col_x;
|
|
|
|
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
const float xi =
|
|
sycl::vec<sycl::half, 1>(x[ix])
|
|
.convert<float, sycl::rounding_mode::automatic>()[0];
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
tmp +=
|
|
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
|
}
|
|
|
|
if (item_ct1.get_local_id(2) == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
|
const float * xi = (const float *) cxi;
|
|
float * dsti = (float *) cdsti;
|
|
|
|
*dsti = *xi;
|
|
}
|
|
|
|
static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
|
const float * xi = (const float *) cxi;
|
|
sycl::half *dsti = (sycl::half *)cdsti;
|
|
|
|
*dsti = sycl::vec<float, 1>(*xi)
|
|
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
|
}
|
|
|
|
static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
|
const sycl::half *xi = (const sycl::half *)cxi;
|
|
sycl::half *dsti = (sycl::half *)cdsti;
|
|
|
|
*dsti = *xi;
|
|
}
|
|
|
|
static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
|
const sycl::half *xi = (const sycl::half *)cxi;
|
|
float *dsti = (float *)cdsti;
|
|
|
|
*dsti = *xi;
|
|
}
|
|
|
|
static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
|
|
const int16_t *xi = (const int16_t *)cxi;
|
|
int16_t *dsti = (int16_t *)cdsti;
|
|
|
|
*dsti = *xi;
|
|
}
|
|
|
|
static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
|
|
const int32_t *xi = (const int32_t *)cxi;
|
|
int32_t *dsti = (int32_t *)cdsti;
|
|
|
|
*dsti = *xi;
|
|
}
|
|
|
|
template <cpy_kernel_t cpy_1>
|
|
static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
|
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
|
// then combine those indices with the corresponding byte offsets to get the total offsets
|
|
const int i03 = i/(ne00 * ne01 * ne02);
|
|
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
|
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
|
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
|
|
|
const int i13 = i/(ne10 * ne11 * ne12);
|
|
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
|
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
|
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
|
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
|
|
|
cpy_1(cx + x_offset, cdst + dst_offset);
|
|
}
|
|
|
|
static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
|
const float * xi = (const float *) cxi;
|
|
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
|
|
|
float amax = 0.0f; // absolute max
|
|
|
|
for (int j = 0; j < QK8_0; j++) {
|
|
const float v = xi[j];
|
|
amax = sycl::fmax(amax, sycl::fabs((float)v));
|
|
}
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
dsti->d = d;
|
|
|
|
for (int j = 0; j < QK8_0; ++j) {
|
|
const float x0 = xi[j]*id;
|
|
|
|
dsti->qs[j] = sycl::round((float)x0);
|
|
}
|
|
}
|
|
|
|
static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
|
const float * xi = (const float *) cxi;
|
|
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
|
|
|
float amax = 0.0f;
|
|
float vmax = 0.0f;
|
|
|
|
for (int j = 0; j < QK4_0; ++j) {
|
|
const float v = xi[j];
|
|
if (amax < sycl::fabs((float)v)) {
|
|
amax = sycl::fabs((float)v);
|
|
vmax = v;
|
|
}
|
|
}
|
|
|
|
const float d = vmax / -8;
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
dsti->d = d;
|
|
|
|
for (int j = 0; j < QK4_0/2; ++j) {
|
|
const float x0 = xi[0 + j]*id;
|
|
const float x1 = xi[QK4_0/2 + j]*id;
|
|
|
|
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
|
|
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
|
|
|
|
dsti->qs[j] = xi0;
|
|
dsti->qs[j] |= xi1 << 4;
|
|
}
|
|
}
|
|
|
|
static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
|
const float * xi = (const float *) cxi;
|
|
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
|
|
|
float vmin = FLT_MAX;
|
|
float vmax = -FLT_MAX;
|
|
|
|
for (int j = 0; j < QK4_1; ++j) {
|
|
const float v = xi[j];
|
|
|
|
if (v < vmin) vmin = v;
|
|
if (v > vmax) vmax = v;
|
|
}
|
|
|
|
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
dsti->dm.x() = d;
|
|
dsti->dm.y() = vmin;
|
|
|
|
for (int j = 0; j < QK4_1/2; ++j) {
|
|
const float x0 = (xi[0 + j] - vmin)*id;
|
|
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
|
|
|
|
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
|
|
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
|
|
|
|
dsti->qs[j] = xi0;
|
|
dsti->qs[j] |= xi1 << 4;
|
|
}
|
|
}
|
|
|
|
template <cpy_kernel_t cpy_blck, int qk>
|
|
static void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
|
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
|
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
|
|
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2)) *
|
|
qk;
|
|
|
|
if (i >= ne) {
|
|
return;
|
|
}
|
|
|
|
const int i03 = i/(ne00 * ne01 * ne02);
|
|
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
|
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
|
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
|
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
|
|
|
const int i13 = i/(ne10 * ne11 * ne12);
|
|
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
|
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
|
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
|
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
|
|
|
cpy_blck(cx + x_offset, cdst + dst_offset);
|
|
}
|
|
|
|
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
|
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
|
|
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
|
|
}
|
|
|
|
struct rope_corr_dims {
|
|
float v[4];
|
|
};
|
|
|
|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
|
static void rope_yarn(
|
|
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
|
float * cos_theta, float * sin_theta
|
|
) {
|
|
// Get n-d rotational scaling corrected for extrapolation
|
|
float theta_interp = freq_scale * theta_extrap;
|
|
float theta = theta_interp;
|
|
if (ext_factor != 0.0f) {
|
|
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
|
|
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
|
|
|
// Get n-d magnitude scaling corrected for interpolation
|
|
mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
|
|
}
|
|
*cos_theta = sycl::cos(theta) * mscale;
|
|
*sin_theta = sycl::sin(theta) * mscale;
|
|
}
|
|
|
|
// rope == RoPE == rotary positional embedding
|
|
template<typename T, bool has_pos>
|
|
static void rope(
|
|
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims
|
|
,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1));
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
const int i = row*ncols + col;
|
|
const int i2 = row/p_delta_rows;
|
|
|
|
const int p = has_pos ? pos[i2] : 0;
|
|
const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
|
|
|
|
float cos_theta, sin_theta;
|
|
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
|
|
|
const float x0 = x[i + 0];
|
|
const float x1 = x[i + 1];
|
|
|
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
|
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
|
|
template<typename T, bool has_pos>
|
|
static void rope_neox(
|
|
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
|
|
,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1));
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
const int ib = col / n_dims;
|
|
const int ic = col % n_dims;
|
|
|
|
if (ib > 0) {
|
|
const int i = row*ncols + ib*n_dims + ic;
|
|
|
|
dst[i + 0] = x[i + 0];
|
|
dst[i + 1] = x[i + 1];
|
|
|
|
return;
|
|
}
|
|
|
|
const int i = row*ncols + ib*n_dims + ic/2;
|
|
const int i2 = row/p_delta_rows;
|
|
|
|
float cur_rot = inv_ndims * ic - ib;
|
|
|
|
const int p = has_pos ? pos[i2] : 0;
|
|
const float theta_base =
|
|
p * freq_scale * dpct::pow(theta_scale, col / 2.0f);
|
|
|
|
float cos_theta, sin_theta;
|
|
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
|
|
|
const float x0 = x[i + 0];
|
|
const float x1 = x[i + n_dims/2];
|
|
|
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
|
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
|
|
static void rope_glm_f32(
|
|
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
|
int n_ctx
|
|
, const sycl::nd_item<3> &item_ct1) {
|
|
const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
const int half_n_dims = ncols/4;
|
|
|
|
if (col >= half_n_dims) {
|
|
return;
|
|
}
|
|
|
|
const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int i = row*ncols + col;
|
|
const int i2 = row/p_delta_rows;
|
|
|
|
const float col_theta_scale = dpct::pow(freq_base, -2.0f * col / ncols);
|
|
// FIXME: this is likely wrong
|
|
const int p = pos != nullptr ? pos[i2] : 0;
|
|
|
|
const float theta = sycl::min(p, n_ctx - 2) * freq_scale * col_theta_scale;
|
|
const float sin_theta = sycl::sin((float)theta);
|
|
const float cos_theta = sycl::cos((float)theta);
|
|
|
|
const float x0 = x[i + 0];
|
|
const float x1 = x[i + half_n_dims];
|
|
|
|
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
|
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
|
|
|
|
const float block_theta =
|
|
((float)sycl::max(p - n_ctx - 2, 0)) * col_theta_scale;
|
|
const float sin_block_theta = sycl::sin((float)block_theta);
|
|
const float cos_block_theta = sycl::cos((float)block_theta);
|
|
|
|
const float x2 = x[i + half_n_dims * 2];
|
|
const float x3 = x[i + half_n_dims * 3];
|
|
|
|
dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
|
|
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
|
|
}
|
|
|
|
static void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
|
|
const int n_heads_log2_floor, const float m0, const float m1,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int i = row*ncols + col;
|
|
|
|
const int k = row/k_rows;
|
|
|
|
float m_k;
|
|
if (k < n_heads_log2_floor) {
|
|
m_k = dpct::pow(m0, k + 1);
|
|
} else {
|
|
m_k = dpct::pow(m1, 2 * (k - n_heads_log2_floor) + 1);
|
|
}
|
|
|
|
dst[i] = col * m_k + x[i];
|
|
}
|
|
|
|
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int row = item_ct1.get_group(1);
|
|
const int col = item_ct1.get_local_id(2);
|
|
|
|
float sum = 0.0f;
|
|
for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
|
|
sum += x[row * ncols + i];
|
|
}
|
|
|
|
sum = warp_reduce_sum(sum, item_ct1);
|
|
|
|
if (col == 0) {
|
|
dst[row] = sum;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static inline void swap(T & a, T & b) {
|
|
T tmp = a;
|
|
a = b;
|
|
b = tmp;
|
|
}
|
|
|
|
template<ggml_sort_order order>
|
|
static void k_argsort_f32_i32(const float * x, int * dst, const int ncols,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
// bitonic sort
|
|
int col = item_ct1.get_local_id(2);
|
|
int row = item_ct1.get_group(1);
|
|
|
|
if (col >= ncols) return;
|
|
|
|
const float * x_row = x + row * ncols;
|
|
int * dst_row = dst + row * ncols;
|
|
|
|
// initialize indices
|
|
if (col < ncols) {
|
|
dst_row[col] = col;
|
|
}
|
|
/*
|
|
DPCT1065:58: Consider replacing sycl::nd_item::barrier() with
|
|
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
|
|
performance if there is no access to global memory.
|
|
*/
|
|
item_ct1.barrier();
|
|
|
|
for (int k = 2; k <= ncols; k *= 2) {
|
|
for (int j = k / 2; j > 0; j /= 2) {
|
|
int ixj = col ^ j;
|
|
if (ixj > col) {
|
|
if ((col & k) == 0) {
|
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
|
swap(dst_row[col], dst_row[ixj]);
|
|
}
|
|
} else {
|
|
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
|
swap(dst_row[col], dst_row[ixj]);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
DPCT1118:11: SYCL group functions and algorithms must be encountered
|
|
in converged control flow. You may need to adjust the code.
|
|
*/
|
|
/*
|
|
DPCT1065:59: Consider replacing sycl::nd_item::barrier() with
|
|
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
|
better performance if there is no access to global memory.
|
|
*/
|
|
item_ct1.barrier();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1);
|
|
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int i = row*ncols + col;
|
|
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
|
|
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
|
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
|
}
|
|
|
|
|
|
template <bool vals_smem, int ncols_template, int block_size_template>
|
|
static void soft_max_f32(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
|
|
const int nrows_y, const float scale, const float max_bias, const float m0,
|
|
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
|
|
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
|
|
|
const int tid = item_ct1.get_local_id(2);
|
|
const int rowx = item_ct1.get_group(2);
|
|
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
|
|
|
|
const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
|
|
|
|
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
|
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
|
|
|
float slope = 0.0f;
|
|
|
|
// ALiBi
|
|
if (max_bias > 0.0f) {
|
|
const uint32_t h = rowx/nrows_y; // head index
|
|
|
|
const float base = h < n_head_log2 ? m0 : m1;
|
|
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
|
|
slope = sycl::pow(base, float(exp));
|
|
}
|
|
|
|
float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
|
|
float max_val = -INFINITY;
|
|
|
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
|
const int col = col0 + tid;
|
|
|
|
if (ncols_template == 0 && col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const int ix = rowx*ncols + col;
|
|
const int iy = rowy*ncols + col;
|
|
|
|
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
|
|
|
|
vals[col] = val;
|
|
max_val = sycl::max(max_val, val);
|
|
}
|
|
|
|
// find the max value in the block
|
|
max_val = warp_reduce_max(max_val, item_ct1);
|
|
if (block_size > WARP_SIZE) {
|
|
if (warp_id == 0) {
|
|
buf[lane_id] = -INFINITY;
|
|
}
|
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
|
|
|
if (lane_id == 0) {
|
|
buf[warp_id] = max_val;
|
|
}
|
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
|
|
|
max_val = buf[lane_id];
|
|
max_val = warp_reduce_max(max_val, item_ct1);
|
|
}
|
|
|
|
float tmp = 0.f;
|
|
|
|
#pragma unroll
|
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
|
const int col = col0 + tid;
|
|
if (ncols_template == 0 && col >= ncols) {
|
|
break;
|
|
}
|
|
|
|
const float val = sycl::native::exp(vals[col] - max_val);
|
|
tmp += val;
|
|
vals[col] = val;
|
|
}
|
|
|
|
// find the sum of exps in the block
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
if (block_size > WARP_SIZE) {
|
|
if (warp_id == 0) {
|
|
buf[lane_id] = 0.f;
|
|
}
|
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
|
|
|
if (lane_id == 0) {
|
|
buf[warp_id] = tmp;
|
|
}
|
|
item_ct1.barrier(sycl::access::fence_space::local_space);
|
|
|
|
tmp = buf[lane_id];
|
|
tmp = warp_reduce_sum(tmp, item_ct1);
|
|
}
|
|
|
|
const float inv_sum = 1.f / tmp;
|
|
|
|
#pragma unroll
|
|
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
|
const int col = col0 + tid;
|
|
|
|
if (ncols_template == 0 && col >= ncols) {
|
|
return;
|
|
}
|
|
|
|
const int idst = rowx*ncols + col;
|
|
dst[idst] = vals[col] * inv_sum;
|
|
}
|
|
}
|
|
|
|
static void scale_f32(const float * x, float * dst, const float scale, const int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
dst[i] = scale * x[i];
|
|
}
|
|
|
|
static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
if (i >= k) {
|
|
return;
|
|
}
|
|
|
|
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
|
}
|
|
|
|
template <typename T>
|
|
static void im2col_kernel(const float *x, T *dst, int offset_delta,
|
|
int IW, int IH, int OW, int KW, int KH,
|
|
int pelements, int CHW, int s0, int s1, int p0,
|
|
int p1, int d0, int d1,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i = item_ct1.get_local_id(2) +
|
|
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
|
if (i >= pelements) {
|
|
return;
|
|
}
|
|
|
|
const int ksize = OW * (KH > 1 ? KW : 1);
|
|
const int kx = i / ksize;
|
|
const int kd = kx * ksize;
|
|
const int ky = (i - kd) / OW;
|
|
const int ix = i % OW;
|
|
|
|
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
|
const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
|
|
|
|
const int64_t offset_dst =
|
|
(item_ct1.get_group(1) * OW + ix) * CHW +
|
|
(item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
|
|
|
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
|
dst[offset_dst] =
|
|
sycl::vec<float, 1>(0.0f)
|
|
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
|
} else {
|
|
const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
|
|
dst[offset_dst] =
|
|
sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
|
|
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
|
}
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dq>
|
|
static void get_rows_sycl(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const void *src0_dd,
|
|
const int32_t *src1_dd, float *dst_dd,
|
|
dpct::queue_ptr stream) {
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
|
|
const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
|
|
const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
|
|
|
|
// strides in elements
|
|
//const size_t s0 = nb0 / ggml_element_size(dst);
|
|
const size_t s1 = nb1 / ggml_element_size(dst);
|
|
const size_t s2 = nb2 / ggml_element_size(dst);
|
|
const size_t s3 = nb3 / ggml_element_size(dst);
|
|
|
|
const size_t s10 = nb10 / ggml_element_size(src1);
|
|
const size_t s11 = nb11 / ggml_element_size(src1);
|
|
const size_t s12 = nb12 / ggml_element_size(src1);
|
|
//const size_t s13 = nb13 / ggml_element_size(src1);
|
|
|
|
GGML_ASSERT(ne00 % 2 == 0);
|
|
|
|
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_get_rows<qk, qr, dq>(
|
|
src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
|
|
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
|
|
});
|
|
|
|
(void) dst;
|
|
}
|
|
|
|
template <typename src0_t>
|
|
static void get_rows_sycl_float(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const src0_t *src0_dd, const int32_t *src1_dd,
|
|
float *dst_dd, dpct::queue_ptr stream) {
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
|
|
const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
|
|
const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
|
|
|
|
// strides in elements
|
|
//const size_t s0 = nb0 / ggml_element_size(dst);
|
|
const size_t s1 = nb1 / ggml_element_size(dst);
|
|
const size_t s2 = nb2 / ggml_element_size(dst);
|
|
const size_t s3 = nb3 / ggml_element_size(dst);
|
|
|
|
const size_t s10 = nb10 / ggml_element_size(src1);
|
|
const size_t s11 = nb11 / ggml_element_size(src1);
|
|
const size_t s12 = nb12 / ggml_element_size(src1);
|
|
//const size_t s13 = nb13 / ggml_element_size(src1);
|
|
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
|
|
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
|
|
});
|
|
}
|
|
|
|
(void) dst;
|
|
}
|
|
|
|
template<float (*bin_op)(const float, const float)>
|
|
struct bin_bcast_sycl {
|
|
template <typename src0_t, typename src1_t, typename dst_t>
|
|
void operator()(const struct ggml_tensor *src0,
|
|
const struct ggml_tensor *src1, struct ggml_tensor *dst,
|
|
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
|
|
dpct::queue_ptr stream) {
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
int nr0 = ne10/ne0;
|
|
int nr1 = ne11/ne1;
|
|
int nr2 = ne12/ne2;
|
|
int nr3 = ne13/ne3;
|
|
|
|
int nr[4] = { nr0, nr1, nr2, nr3 };
|
|
|
|
// collapse dimensions until first broadcast dimension
|
|
int64_t cne0[] = {ne0, ne1, ne2, ne3};
|
|
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
|
size_t cnb0[] = {nb0, nb1, nb2, nb3};
|
|
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
|
auto collapse = [](int64_t cne[]) {
|
|
cne[0] *= cne[1];
|
|
cne[1] = cne[2];
|
|
cne[2] = cne[3];
|
|
cne[3] = 1;
|
|
};
|
|
|
|
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
|
|
cnb[1] *= cne[1];
|
|
cnb[2] *= cne[2];
|
|
cnb[3] *= cne[3];
|
|
};
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if (nr[i] != 1) {
|
|
break;
|
|
}
|
|
if (i > 0) {
|
|
collapse_nb(cnb0, cne0);
|
|
collapse_nb(cnb1, cne1);
|
|
collapse(cne0);
|
|
collapse(cne1);
|
|
}
|
|
}
|
|
{
|
|
int64_t ne0 = cne0[0];
|
|
int64_t ne1 = cne0[1];
|
|
int64_t ne2 = cne0[2];
|
|
int64_t ne3 = cne0[3];
|
|
|
|
int64_t ne10 = cne1[0];
|
|
int64_t ne11 = cne1[1];
|
|
int64_t ne12 = cne1[2];
|
|
int64_t ne13 = cne1[3];
|
|
|
|
size_t nb0 = cnb0[0];
|
|
size_t nb1 = cnb0[1];
|
|
size_t nb2 = cnb0[2];
|
|
size_t nb3 = cnb0[3];
|
|
|
|
size_t nb10 = cnb1[0];
|
|
size_t nb11 = cnb1[1];
|
|
size_t nb12 = cnb1[2];
|
|
size_t nb13 = cnb1[3];
|
|
|
|
size_t s0 = nb0 / sizeof(dst_t);
|
|
size_t s1 = nb1 / sizeof(dst_t);
|
|
size_t s2 = nb2 / sizeof(dst_t);
|
|
size_t s3 = nb3 / sizeof(dst_t);
|
|
|
|
size_t s10 = nb10 / sizeof(src1_t);
|
|
size_t s11 = nb11 / sizeof(src1_t);
|
|
size_t s12 = nb12 / sizeof(src1_t);
|
|
size_t s13 = nb13 / sizeof(src1_t);
|
|
|
|
GGML_ASSERT(s0 == 1);
|
|
GGML_ASSERT(s10 == 1);
|
|
|
|
const int block_size = 128;
|
|
|
|
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
|
|
|
sycl::range<3> block_dims(1, 1, 1);
|
|
block_dims[2] = std::min<unsigned int>(hne0, block_size);
|
|
block_dims[1] = std::min<unsigned int>(
|
|
ne1, block_size / (unsigned int)block_dims[2]);
|
|
block_dims[0] = std::min(
|
|
std::min<unsigned int>(
|
|
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
|
|
(unsigned int)block_dims[1]),
|
|
64U);
|
|
|
|
sycl::range<3> block_nums(
|
|
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
|
|
(ne1 + block_dims[1] - 1) / block_dims[1],
|
|
(hne0 + block_dims[2] - 1) / block_dims[2]);
|
|
|
|
if (block_nums[0] > 65535) {
|
|
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
|
|
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
|
|
sycl::range<3>(1, 1, block_size),
|
|
sycl::range<3>(1, 1, block_size)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_bin_bcast_unravel<bin_op>(
|
|
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
|
|
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
|
|
s13, item_ct1);
|
|
});
|
|
}
|
|
} else {
|
|
/*
|
|
DPCT1049:16: The work-group size passed to the SYCL kernel may
|
|
exceed the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if
|
|
needed.
|
|
*/
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
|
|
ne2, ne3, ne10, ne11, ne12, ne13,
|
|
s1, s2, s3, s11, s12, s13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
static void acc_f32_sycl(const float *x, const float *y, float *dst,
|
|
const int n_elements, const int ne10, const int ne11,
|
|
const int ne12, const int nb1, const int nb2,
|
|
const int offset, dpct::queue_ptr stream) {
|
|
int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
|
|
item_ct1);
|
|
});
|
|
}
|
|
|
|
static void gelu_f32_sycl(const float *x, float *dst, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
gelu_f32(x, dst, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void silu_f32_sycl(const float *x, float *dst, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
silu_f32(x, dst, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
gelu_quick_f32(x, dst, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void tanh_f32_sycl(const float *x, float *dst, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
tanh_f32(x, dst, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void relu_f32_sycl(const float *x, float *dst, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
relu_f32(x, dst, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
|
|
const float negative_slope,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void sqr_f32_sycl(const float *x, float *dst, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
sqr_f32(x, dst, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void norm_f32_sycl(const float *x, float *dst, const int ncols,
|
|
const int nrows, const float eps,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
|
if (ncols < 1024) {
|
|
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
|
|
sycl::range<1>(32), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
|
block_dims),
|
|
[=](sycl::nd_item<3> item_ct1)
|
|
[[intel::reqd_sub_group_size(32)]] {
|
|
norm_f32(x, dst, ncols, eps, item_ct1,
|
|
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
|
|
});
|
|
});
|
|
} else {
|
|
const int work_group_size = g_work_group_size;
|
|
const sycl::range<3> block_dims(1, 1, work_group_size);
|
|
/*
|
|
DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
|
|
sycl::range<1>(32), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
|
block_dims),
|
|
[=](sycl::nd_item<3> item_ct1)
|
|
[[intel::reqd_sub_group_size(32)]] {
|
|
norm_f32(x, dst, ncols, eps, item_ct1,
|
|
s_sum_acc_ct1.get_pointer(), work_group_size);
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
static void group_norm_f32_sycl(const float *x, float *dst,
|
|
const int num_groups, const int group_size,
|
|
const int ne_elements, dpct::queue_ptr stream) {
|
|
static const float eps = 1e-6f;
|
|
if (group_size < 1024) {
|
|
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
|
cgh);
|
|
|
|
const float eps_ct4 = eps;
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
|
block_dims),
|
|
[=](sycl::nd_item<3> item_ct1)
|
|
[[intel::reqd_sub_group_size(32)]] {
|
|
group_norm_f32(
|
|
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
|
|
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
|
|
});
|
|
});
|
|
} else {
|
|
const int work_group_size = g_work_group_size;
|
|
const sycl::range<3> block_dims(1, 1, work_group_size);
|
|
/*
|
|
DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
|
cgh);
|
|
|
|
const float eps_ct4 = eps;
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
|
block_dims),
|
|
[=](sycl::nd_item<3> item_ct1)
|
|
[[intel::reqd_sub_group_size(32)]] {
|
|
group_norm_f32(x, dst, group_size, ne_elements,
|
|
eps_ct4, item_ct1,
|
|
s_sum_acc_ct1.get_pointer(), work_group_size);
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
static void concat_f32_sycl(const float *x, const float *y, float *dst,
|
|
const int ne0, int ne1, int ne2, int ne02,
|
|
dpct::queue_ptr stream) {
|
|
int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
|
|
sycl::range<3> gridDim(ne2, ne1, num_blocks);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(gridDim *
|
|
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
concat_f32(x, y, dst, ne0, ne02, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void upscale_f32_sycl(const float *x, float *dst, const int ne00,
|
|
const int ne01, const int ne02,
|
|
const int scale_factor, dpct::queue_ptr stream) {
|
|
int ne0 = (ne00 * scale_factor);
|
|
int num_blocks = (ne0 + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
|
|
sycl::range<3> gridDim(ne02, (ne01 * scale_factor), num_blocks);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(gridDim *
|
|
sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
upscale_f32(x, dst, ne00, ne00 * ne01, scale_factor, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void pad_f32_sycl(const float *x, float *dst, const int ne00,
|
|
const int ne01, const int ne02, const int ne0,
|
|
const int ne1, const int ne2, dpct::queue_ptr stream) {
|
|
int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
|
|
sycl::range<3> gridDim(ne2, ne1, num_blocks);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
|
|
const int nrows, const float eps,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
|
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
|
|
if (ncols < 1024) {
|
|
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
|
cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
|
block_dims),
|
|
[=](sycl::nd_item<3> item_ct1)
|
|
[[intel::reqd_sub_group_size(32)]] {
|
|
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
|
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
|
|
});
|
|
});
|
|
} else {
|
|
const int work_group_size = g_work_group_size;
|
|
const sycl::range<3> block_dims(1, 1, work_group_size);
|
|
/*
|
|
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
|
cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
|
block_dims),
|
|
[=](sycl::nd_item<3> item_ct1)
|
|
[[intel::reqd_sub_group_size(32)]] {
|
|
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
|
s_sum_acc_ct1.get_pointer(), work_group_size);
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
|
|
const int ky, const int kx_padded,
|
|
dpct::queue_ptr stream) {
|
|
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
|
|
const sycl::range<3> num_blocks(1, ky, block_num_x);
|
|
const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(num_blocks * block_size, block_size),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
|
static void dequantize_block_sycl(const void *__restrict__ vx,
|
|
dst_t *__restrict__ y, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(
|
|
sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
template <typename dst_t>
|
|
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
sycl::range<3>(1, 1, 64),
|
|
sycl::range<3>(1, 1, 64)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
dequantize_block_q2_K(vx, y, item_ct1);
|
|
});
|
|
}
|
|
#else
|
|
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
template <typename dst_t>
|
|
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
sycl::range<3>(1, 1, 64),
|
|
sycl::range<3>(1, 1, 64)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
dequantize_block_q3_K(vx, y, item_ct1);
|
|
});
|
|
}
|
|
#else
|
|
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
template <typename dst_t>
|
|
static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int nb = k / QK_K;
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
sycl::range<3>(1, 1, 32),
|
|
sycl::range<3>(1, 1, 32)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
dequantize_block_q4_K(vx, y, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
template <typename dst_t>
|
|
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
sycl::range<3>(1, 1, 64),
|
|
sycl::range<3>(1, 1, 64)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
dequantize_block_q5_K(vx, y, item_ct1);
|
|
});
|
|
}
|
|
#else
|
|
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
template <typename dst_t>
|
|
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int nb = k / QK_K;
|
|
#if QK_K == 256
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
sycl::range<3>(1, 1, 64),
|
|
sycl::range<3>(1, 1, 64)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
dequantize_block_q6_K(vx, y, item_ct1);
|
|
});
|
|
}
|
|
#else
|
|
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
#endif
|
|
}
|
|
|
|
static to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
|
|
case GGML_TYPE_Q4_1:
|
|
return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
|
|
case GGML_TYPE_Q5_0:
|
|
return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
|
|
case GGML_TYPE_Q5_1:
|
|
return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
|
|
case GGML_TYPE_Q8_0:
|
|
return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
|
|
case GGML_TYPE_Q2_K:
|
|
return dequantize_row_q2_K_sycl;
|
|
case GGML_TYPE_Q3_K:
|
|
return dequantize_row_q3_K_sycl;
|
|
case GGML_TYPE_Q4_K:
|
|
return dequantize_row_q4_K_sycl;
|
|
case GGML_TYPE_Q5_K:
|
|
return dequantize_row_q5_K_sycl;
|
|
case GGML_TYPE_Q6_K:
|
|
return dequantize_row_q6_K_sycl;
|
|
case GGML_TYPE_F32:
|
|
return dequantize_block_sycl<1, 1, convert_f32>;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
|
|
case GGML_TYPE_Q4_1:
|
|
return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
|
|
case GGML_TYPE_Q5_0:
|
|
return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
|
|
case GGML_TYPE_Q5_1:
|
|
return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
|
|
case GGML_TYPE_Q8_0:
|
|
return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
|
|
case GGML_TYPE_Q2_K:
|
|
return dequantize_row_q2_K_sycl;
|
|
case GGML_TYPE_Q3_K:
|
|
return dequantize_row_q3_K_sycl;
|
|
case GGML_TYPE_Q4_K:
|
|
return dequantize_row_q4_K_sycl;
|
|
case GGML_TYPE_Q5_K:
|
|
return dequantize_row_q5_K_sycl;
|
|
case GGML_TYPE_Q6_K:
|
|
return dequantize_row_q6_K_sycl;
|
|
case GGML_TYPE_F16:
|
|
return dequantize_block_sycl<1, 1, convert_f16>;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
|
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
|
|
vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
|
|
vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
|
|
vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
|
|
vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
|
|
vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, ny, 32);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, ny, 32);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, ny, 32);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const sycl::range<3> block_dims(1, 1, 32);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, ny, 32);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
|
|
nrows, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
template <int qk, int qi, typename block_q_t, int vdr,
|
|
vec_dot_q_sycl_t vec_dot_q_sycl>
|
|
static void mul_mat_vec_q_sycl_submitter(const void *vx, const void *vy,
|
|
float *dst, const int ncols,
|
|
const int nrows,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % QK4_0 == 0);
|
|
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
|
const sycl::range<3> block_nums(1, 1, block_num_y);
|
|
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims), [=
|
|
](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
mul_mat_vec_q<qk, qi, block_q_t, vdr, vec_dot_q_sycl>(
|
|
vx, vy, dst, ncols, nrows, item_ct1);
|
|
});
|
|
}
|
|
|
|
int get_device_index_by_id(int id){
|
|
int res = g_sycl_device_id2index[id].index;
|
|
// GGML_SYCL_DEBUG("get_device_index_by_id id=%d device_index=%d\n", id, res);
|
|
GGML_ASSERT(res>=0);
|
|
return res;
|
|
}
|
|
|
|
int get_device_id_by_index(int index){
|
|
int res = g_device_caps[index].device_id;
|
|
GGML_ASSERT(res>=0);
|
|
return res;
|
|
}
|
|
|
|
|
|
int get_current_device_index(){
|
|
return get_device_index_by_id(dpct::dev_mgr::instance().current_device_id());
|
|
}
|
|
|
|
static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q4_0_RDNA2;
|
|
mmq_y = MMQ_Y_Q4_0_RDNA2;
|
|
nwarps = NWARPS_Q4_0_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q4_0_RDNA1;
|
|
mmq_y = MMQ_Y_Q4_0_RDNA1;
|
|
nwarps = NWARPS_Q4_0_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q4_0_AMPERE;
|
|
mmq_y = MMQ_Y_Q4_0_AMPERE;
|
|
nwarps = NWARPS_Q4_0_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q4_0_PASCAL;
|
|
mmq_y = MMQ_Y_Q4_0_PASCAL;
|
|
nwarps = NWARPS_Q4_0_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:20: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q4_0<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_qs_q4_0_acc_ct1.get_pointer(),
|
|
tile_x_d_q4_0_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:21: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q4_0<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_qs_q4_0_acc_ct1.get_pointer(),
|
|
tile_x_d_q4_0_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q4_1_RDNA2;
|
|
mmq_y = MMQ_Y_Q4_1_RDNA2;
|
|
nwarps = NWARPS_Q4_1_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q4_1_RDNA1;
|
|
mmq_y = MMQ_Y_Q4_1_RDNA1;
|
|
nwarps = NWARPS_Q4_1_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q4_1_AMPERE;
|
|
mmq_y = MMQ_Y_Q4_1_AMPERE;
|
|
nwarps = NWARPS_Q4_1_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q4_1_PASCAL;
|
|
mmq_y = MMQ_Y_Q4_1_PASCAL;
|
|
nwarps = NWARPS_Q4_1_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:22: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q4_1<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_qs_q4_1_acc_ct1.get_pointer(),
|
|
tile_x_dm_q4_1_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:23: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q4_1<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_qs_q4_1_acc_ct1.get_pointer(),
|
|
tile_x_dm_q4_1_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q5_0_RDNA2;
|
|
mmq_y = MMQ_Y_Q5_0_RDNA2;
|
|
nwarps = NWARPS_Q5_0_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q5_0_RDNA1;
|
|
mmq_y = MMQ_Y_Q5_0_RDNA1;
|
|
nwarps = NWARPS_Q5_0_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q5_0_AMPERE;
|
|
mmq_y = MMQ_Y_Q5_0_AMPERE;
|
|
nwarps = NWARPS_Q5_0_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q5_0_PASCAL;
|
|
mmq_y = MMQ_Y_Q5_0_PASCAL;
|
|
nwarps = NWARPS_Q5_0_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:24: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q5_0<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q5_0_acc_ct1.get_pointer(),
|
|
tile_x_d_q5_0_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:25: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q5_0<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q5_0_acc_ct1.get_pointer(),
|
|
tile_x_d_q5_0_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q5_1_RDNA2;
|
|
mmq_y = MMQ_Y_Q5_1_RDNA2;
|
|
nwarps = NWARPS_Q5_1_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q5_1_RDNA1;
|
|
mmq_y = MMQ_Y_Q5_1_RDNA1;
|
|
nwarps = NWARPS_Q5_1_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q5_1_AMPERE;
|
|
mmq_y = MMQ_Y_Q5_1_AMPERE;
|
|
nwarps = NWARPS_Q5_1_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q5_1_PASCAL;
|
|
mmq_y = MMQ_Y_Q5_1_PASCAL;
|
|
nwarps = NWARPS_Q5_1_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:26: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q5_1<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q5_1_acc_ct1.get_pointer(),
|
|
tile_x_dm_q5_1_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:27: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q5_1<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q5_1_acc_ct1.get_pointer(),
|
|
tile_x_dm_q5_1_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q8_0_RDNA2;
|
|
mmq_y = MMQ_Y_Q8_0_RDNA2;
|
|
nwarps = NWARPS_Q8_0_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q8_0_RDNA1;
|
|
mmq_y = MMQ_Y_Q8_0_RDNA1;
|
|
nwarps = NWARPS_Q8_0_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q8_0_AMPERE;
|
|
mmq_y = MMQ_Y_Q8_0_AMPERE;
|
|
nwarps = NWARPS_Q8_0_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q8_0_PASCAL;
|
|
mmq_y = MMQ_Y_Q8_0_PASCAL;
|
|
nwarps = NWARPS_Q8_0_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:28: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q8_0<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_qs_q8_0_acc_ct1.get_pointer(),
|
|
tile_x_d_q8_0_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:29: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q8_0<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_qs_q8_0_acc_ct1.get_pointer(),
|
|
tile_x_d_q8_0_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q2_K_RDNA2;
|
|
mmq_y = MMQ_Y_Q2_K_RDNA2;
|
|
nwarps = NWARPS_Q2_K_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q2_K_RDNA1;
|
|
mmq_y = MMQ_Y_Q2_K_RDNA1;
|
|
nwarps = NWARPS_Q2_K_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q2_K_AMPERE;
|
|
mmq_y = MMQ_Y_Q2_K_AMPERE;
|
|
nwarps = NWARPS_Q2_K_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q2_K_PASCAL;
|
|
mmq_y = MMQ_Y_Q2_K_PASCAL;
|
|
nwarps = NWARPS_Q2_K_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:30: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q2_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q2_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q2_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q2_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:31: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q2_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q2_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q2_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q2_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
#if QK_K == 256
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q3_K_RDNA2;
|
|
mmq_y = MMQ_Y_Q3_K_RDNA2;
|
|
nwarps = NWARPS_Q3_K_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q3_K_RDNA1;
|
|
mmq_y = MMQ_Y_Q3_K_RDNA1;
|
|
nwarps = NWARPS_Q3_K_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q3_K_AMPERE;
|
|
mmq_y = MMQ_Y_Q3_K_AMPERE;
|
|
nwarps = NWARPS_Q3_K_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q3_K_PASCAL;
|
|
mmq_y = MMQ_Y_Q3_K_PASCAL;
|
|
nwarps = NWARPS_Q3_K_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:32: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q3_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q3_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q3_K_acc_ct1.get_pointer(),
|
|
tile_x_qh_q3_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q3_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:33: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q3_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q3_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q3_K_acc_ct1.get_pointer(),
|
|
tile_x_qh_q3_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q3_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q4_K_RDNA2;
|
|
mmq_y = MMQ_Y_Q4_K_RDNA2;
|
|
nwarps = NWARPS_Q4_K_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q4_K_RDNA1;
|
|
mmq_y = MMQ_Y_Q4_K_RDNA1;
|
|
nwarps = NWARPS_Q4_K_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q4_K_AMPERE;
|
|
mmq_y = MMQ_Y_Q4_K_AMPERE;
|
|
nwarps = NWARPS_Q4_K_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q4_K_PASCAL;
|
|
mmq_y = MMQ_Y_Q4_K_PASCAL;
|
|
nwarps = NWARPS_Q4_K_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:34: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q4_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q4_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q4_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q4_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:35: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q4_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q4_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q4_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q4_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q5_K_RDNA2;
|
|
mmq_y = MMQ_Y_Q5_K_RDNA2;
|
|
nwarps = NWARPS_Q5_K_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q5_K_RDNA1;
|
|
mmq_y = MMQ_Y_Q5_K_RDNA1;
|
|
nwarps = NWARPS_Q5_K_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q5_K_AMPERE;
|
|
mmq_y = MMQ_Y_Q5_K_AMPERE;
|
|
nwarps = NWARPS_Q5_K_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q5_K_PASCAL;
|
|
mmq_y = MMQ_Y_Q5_K_PASCAL;
|
|
nwarps = NWARPS_Q5_K_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:36: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q5_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q5_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q5_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q5_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:37: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q5_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_q5_K_acc_ct1.get_pointer(),
|
|
tile_x_dm_q5_K_acc_ct1.get_pointer(),
|
|
tile_x_sc_q5_K_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x, const int ncols_y,
|
|
const int nrows_y, const int nrows_dst,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
const int compute_capability = g_device_caps[id].cc;
|
|
|
|
int mmq_x, mmq_y, nwarps;
|
|
if (compute_capability >= VER_GEN13) {
|
|
mmq_x = MMQ_X_Q6_K_RDNA2;
|
|
mmq_y = MMQ_Y_Q6_K_RDNA2;
|
|
nwarps = NWARPS_Q6_K_RDNA2;
|
|
} else if (compute_capability >= VER_GEN12) {
|
|
mmq_x = MMQ_X_Q6_K_RDNA1;
|
|
mmq_y = MMQ_Y_Q6_K_RDNA1;
|
|
nwarps = NWARPS_Q6_K_RDNA1;
|
|
} else if (compute_capability >= VER_GEN9) {
|
|
mmq_x = MMQ_X_Q6_K_AMPERE;
|
|
mmq_y = MMQ_Y_Q6_K_AMPERE;
|
|
nwarps = NWARPS_Q6_K_AMPERE;
|
|
} else if (compute_capability >= VER_4VEC) {
|
|
mmq_x = MMQ_X_Q6_K_PASCAL;
|
|
mmq_y = MMQ_Y_Q6_K_PASCAL;
|
|
nwarps = NWARPS_Q6_K_PASCAL;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
|
|
const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
|
|
const sycl::range<3> block_nums(1, block_num_y, block_num_x);
|
|
const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
|
|
|
|
if (nrows_x % mmq_y == 0) {
|
|
const bool need_check = false;
|
|
/*
|
|
DPCT1049:38: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q6_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_acc_ct1.get_pointer(),
|
|
tile_x_dm_acc_ct1.get_pointer(),
|
|
tile_x_sc_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
} else {
|
|
const bool need_check = true;
|
|
/*
|
|
DPCT1049:39: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
|
|
sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
|
|
cgh);
|
|
sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
|
|
sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
|
|
sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE), cgh);
|
|
sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
|
|
sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
mul_mat_q6_K<need_check>(
|
|
vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
|
|
nrows_dst, item_ct1,
|
|
tile_x_ql_acc_ct1.get_pointer(),
|
|
tile_x_dm_acc_ct1.get_pointer(),
|
|
tile_x_sc_acc_ct1.get_pointer(),
|
|
tile_y_qs_acc_ct1.get_pointer(),
|
|
tile_y_ds_acc_ct1.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
|
|
float *dst, const int ncols_x,
|
|
const int nrows_x,
|
|
const int nchannels_x,
|
|
const int nchannels_y,
|
|
dpct::queue_ptr stream) {
|
|
|
|
const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
|
|
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
|
|
nchannels_y, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_vec_nc_f16_f32_sycl(
|
|
const void *vx, const float *y, float *dst, const int ncols_x,
|
|
const int nrows_x, const int row_stride_x, const int nchannels_x,
|
|
const int nchannels_y, const int channel_stride_x, dpct::queue_ptr stream) {
|
|
|
|
const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
|
|
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
|
|
row_stride_x, channel_stride_x,
|
|
nchannels_y / nchannels_x, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
GGML_ASSERT(ne % QK8_0 == 0);
|
|
const int num_blocks = ne / QK8_0;
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
|
|
sycl::range<3>(1, 1, 1)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
|
|
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
|
|
static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
GGML_ASSERT(ne % QK4_0 == 0);
|
|
const int num_blocks = ne / QK4_0;
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
|
|
sycl::range<3>(1, 1, 1)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
|
|
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
|
|
static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
GGML_ASSERT(ne % QK4_1 == 0);
|
|
const int num_blocks = ne / QK4_1;
|
|
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
|
|
sycl::range<3>(1, 1, 1)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
|
|
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
|
|
static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
|
{
|
|
// dpct::has_capability_or_fail(stream->get_device(),
|
|
// {sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
|
|
const int ne00, const int ne01,
|
|
const int ne02, const int nb00,
|
|
const int nb01, const int nb02,
|
|
const int nb03, const int ne10,
|
|
const int ne11, const int ne12,
|
|
const int nb10, const int nb11,
|
|
const int nb12, const int nb13,
|
|
dpct::queue_ptr stream) {
|
|
|
|
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
|
{
|
|
// dpct::has_capability_or_fail(stream->get_device(),
|
|
// {sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void scale_f32_sycl(const float *x, float *dst, const float scale,
|
|
const int k, dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
scale_f32(x, dst, scale, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void clamp_f32_sycl(const float *x, float *dst, const float min,
|
|
const float max, const int k,
|
|
dpct::queue_ptr stream) {
|
|
const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
|
sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
clamp_f32(x, dst, min, max, k, item_ct1);
|
|
});
|
|
}
|
|
|
|
template <typename T>
|
|
static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
|
|
const int32_t *pos, float freq_scale, int p_delta_rows,
|
|
float freq_base, float ext_factor, float attn_factor,
|
|
rope_corr_dims corr_dims, dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % 2 == 0);
|
|
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
|
const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
|
const sycl::range<3> block_nums(1, num_blocks_x, nrows);
|
|
if (pos == nullptr) {
|
|
/*
|
|
DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
|
|
freq_base, ext_factor, attn_factor, corr_dims,
|
|
item_ct1);
|
|
});
|
|
} else {
|
|
/*
|
|
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
|
|
freq_base, ext_factor, attn_factor, corr_dims,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
|
|
const int32_t *pos, float freq_scale,
|
|
int p_delta_rows, float freq_base, float ext_factor,
|
|
float attn_factor, rope_corr_dims corr_dims,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % 2 == 0);
|
|
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
|
const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
|
const sycl::range<3> block_nums(1, num_blocks_x, nrows);
|
|
|
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
|
const float inv_ndims = -1.0f / n_dims;
|
|
|
|
if (pos == nullptr) {
|
|
/*
|
|
DPCT1049:42: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
rope_neox<T, false>(x, dst, ncols, n_dims, pos, freq_scale,
|
|
p_delta_rows, ext_factor, attn_factor,
|
|
corr_dims, theta_scale, inv_ndims,
|
|
item_ct1);
|
|
});
|
|
} else {
|
|
/*
|
|
DPCT1049:43: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
rope_neox<T, true>(x, dst, ncols, n_dims, pos, freq_scale,
|
|
p_delta_rows, ext_factor, attn_factor,
|
|
corr_dims, theta_scale, inv_ndims, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows,
|
|
const int32_t *pos, float freq_scale,
|
|
int p_delta_rows, float freq_base, int n_ctx,
|
|
dpct::queue_ptr stream) {
|
|
GGML_ASSERT(ncols % 4 == 0);
|
|
const sycl::range<3> block_dims(1, 1, SYCL_ROPE_BLOCK_SIZE / 4);
|
|
const int num_blocks_x = (ncols + SYCL_ROPE_BLOCK_SIZE - 1) / SYCL_ROPE_BLOCK_SIZE;
|
|
const sycl::range<3> block_nums(1, nrows, num_blocks_x);
|
|
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
rope_glm_f32(x, dst, ncols, pos, freq_scale,
|
|
p_delta_rows, freq_base, n_ctx,
|
|
item_ct1);
|
|
});
|
|
}
|
|
|
|
static void alibi_f32_sycl(const float *x, float *dst, const int ncols,
|
|
const int nrows, const int k_rows,
|
|
const int n_heads_log2_floor, const float m0,
|
|
const float m1, dpct::queue_ptr stream) {
|
|
const sycl::range<3> block_dims(1, 1, SYCL_ALIBI_BLOCK_SIZE);
|
|
const int num_blocks_x = (ncols + SYCL_ALIBI_BLOCK_SIZE - 1) / (SYCL_ALIBI_BLOCK_SIZE);
|
|
const sycl::range<3> block_nums(1, nrows, num_blocks_x);
|
|
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
alibi_f32(x, dst, ncols, k_rows,
|
|
n_heads_log2_floor, m0, m1, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
|
|
const int nrows, dpct::queue_ptr stream) {
|
|
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
|
const sycl::range<3> block_nums(1, nrows, 1);
|
|
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1)
|
|
[[intel::reqd_sub_group_size(32)]] {
|
|
k_sum_rows_f32(x, dst, ncols, item_ct1);
|
|
});
|
|
}
|
|
|
|
static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|
const int nrows, ggml_sort_order order,
|
|
dpct::queue_ptr stream) {
|
|
// bitonic sort requires ncols to be power of 2
|
|
GGML_ASSERT((ncols & (ncols - 1)) == 0);
|
|
|
|
const sycl::range<3> block_dims(1, 1, ncols);
|
|
const sycl::range<3> block_nums(1, nrows, 1);
|
|
if (order == GGML_SORT_ORDER_ASC) {
|
|
/*
|
|
DPCT1049:44: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(x, dst, ncols, item_ct1);
|
|
});
|
|
} else if (order == GGML_SORT_ORDER_DESC) {
|
|
/*
|
|
DPCT1049:45: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(x, dst, ncols, item_ct1);
|
|
});
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static void diag_mask_inf_f32_sycl(const float *x, float *dst,
|
|
const int ncols_x, const int nrows_x,
|
|
const int rows_per_channel, const int n_past,
|
|
dpct::queue_ptr stream) {
|
|
const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
|
const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
|
|
const sycl::range<3> block_nums(1, block_num_x, nrows_x);
|
|
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
diag_mask_inf_f32(x, dst, ncols_x,
|
|
rows_per_channel, n_past,
|
|
item_ct1);
|
|
});
|
|
}
|
|
|
|
template <bool vals_smem, int ncols_template, int block_size_template>
|
|
static void soft_max_f32_submitter(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
|
|
const int nrows_y, const float scale, const float max_bias, const float m0,
|
|
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
|
|
const size_t n_local_scratch, dpct::queue_ptr stream) {
|
|
stream->submit([&](sycl::handler &cgh) {
|
|
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
|
|
|
|
cgh.parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
|
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, pos, dst, ncols_par,
|
|
nrows_y, scale, max_bias, m0,
|
|
m1, n_head_log2, item_ct1,
|
|
local_buf_acc.get_pointer());
|
|
});
|
|
});
|
|
}
|
|
|
|
static void soft_max_f32_sycl(const float * x, const float * mask, const float * pos,
|
|
float * dst, const int ncols_x, const int nrows_x,
|
|
const int nrows_y, const float scale, const float max_bias,
|
|
dpct::queue_ptr stream) {
|
|
int nth = WARP_SIZE;
|
|
while (nth < ncols_x && nth < SYCL_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
|
const sycl::range<3> block_dims(1, 1, nth);
|
|
const sycl::range<3> block_nums(1, 1, nrows_x);
|
|
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
|
|
static_assert(SYCL_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
|
|
|
const uint32_t n_head_kv = nrows_x/nrows_y;
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
|
|
if (n_local_scratch*sizeof(float) < local_mem_size) {
|
|
switch (ncols_x) {
|
|
case 32:
|
|
soft_max_f32_submitter<true, 32, 32>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
case 64:
|
|
soft_max_f32_submitter<true, 64, 64>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
case 128:
|
|
soft_max_f32_submitter<true, 128, 128>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
case 256:
|
|
soft_max_f32_submitter<true, 256, 256>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
case 512:
|
|
soft_max_f32_submitter<true, 512, 512>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
case 1024:
|
|
soft_max_f32_submitter<true, 1024, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
case 2048:
|
|
soft_max_f32_submitter<true, 2048, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
case 4096:
|
|
soft_max_f32_submitter<true, 4096, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
default:
|
|
soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, n_local_scratch, stream);
|
|
break;
|
|
}
|
|
} else {
|
|
soft_max_f32_submitter<false, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
|
max_bias, m0, m1, n_head_log2, block_nums,
|
|
block_dims, WARP_SIZE, stream);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
|
|
int OW, int OH, int KW, int KH, int IC,
|
|
int offset_delta, int s0, int s1, int p0,
|
|
int p1, int d0, int d1,
|
|
dpct::queue_ptr stream) {
|
|
const int parallel_elements = OW * KW * KH;
|
|
const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
|
|
sycl::range<3> block_nums(IC, OH, num_blocks);
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums *
|
|
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
|
|
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
|
|
parallel_elements, (IC * KH * KW), s0, s1, p0,
|
|
p1, d0, d1, item_ct1);
|
|
});
|
|
}
|
|
}
|
|
|
|
// buffer pool for sycl
|
|
#define MAX_SYCL_BUFFERS 256
|
|
|
|
struct scoped_spin_lock {
|
|
std::atomic_flag& lock;
|
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
|
|
while (lock.test_and_set(std::memory_order_acquire)) {
|
|
; // spin
|
|
}
|
|
}
|
|
~scoped_spin_lock() {
|
|
lock.clear(std::memory_order_release);
|
|
}
|
|
scoped_spin_lock(const scoped_spin_lock&) = delete;
|
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
|
|
};
|
|
|
|
static std::atomic_flag g_sycl_pool_lock = ATOMIC_FLAG_INIT;
|
|
|
|
// #define DEBUG_SYCL_MALLOC
|
|
struct sycl_buffer {
|
|
void * ptr = nullptr;
|
|
size_t size = 0;
|
|
};
|
|
|
|
static sycl_buffer g_sycl_buffer_pool[GGML_SYCL_MAX_DEVICES][MAX_SYCL_BUFFERS];
|
|
static size_t g_sycl_pool_size[GGML_SYCL_MAX_DEVICES] = {0};
|
|
|
|
static void *ggml_sycl_pool_malloc_leg(size_t size, size_t *actual_size) try {
|
|
scoped_spin_lock lock(g_sycl_pool_lock);
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
// GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg index %d\n", id);
|
|
#ifdef DEBUG_SYCL_MALLOC
|
|
int nnz = 0;
|
|
size_t max_size = 0;
|
|
#endif
|
|
size_t best_diff = 1ull << 36;
|
|
int ibest = -1;
|
|
for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
|
|
sycl_buffer& b = g_sycl_buffer_pool[id][i];
|
|
if (b.ptr != nullptr) {
|
|
#ifdef DEBUG_SYCL_MALLOC
|
|
++nnz;
|
|
if (b.size > max_size) max_size = b.size;
|
|
#endif
|
|
if (b.size >= size) {
|
|
size_t diff = b.size - size;
|
|
if (diff < best_diff) {
|
|
best_diff = diff;
|
|
ibest = i;
|
|
if (!best_diff) {
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
b.ptr = nullptr;
|
|
b.size = 0;
|
|
// GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 1 %p\n", ptr);
|
|
return ptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (ibest >= 0) {
|
|
sycl_buffer& b = g_sycl_buffer_pool[id][ibest];
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
b.ptr = nullptr;
|
|
b.size = 0;
|
|
// GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 2 %p\n", ptr);
|
|
return ptr;
|
|
}
|
|
void * ptr;
|
|
size_t look_ahead_size = (size_t) (1.05 * size);
|
|
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
|
|
|
|
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
|
|
look_ahead_size, *stream)));
|
|
*actual_size = look_ahead_size;
|
|
g_sycl_pool_size[id] += look_ahead_size;
|
|
|
|
#ifdef DEBUG_SYCL_MALLOC
|
|
fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
|
|
(uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
|
|
#endif
|
|
// GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return %p\n", ptr);
|
|
return ptr;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_pool_free_leg(void *ptr, size_t size) try {
|
|
scoped_spin_lock lock(g_sycl_pool_lock);
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
|
|
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
|
for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
|
|
sycl_buffer& b = g_sycl_buffer_pool[id][i];
|
|
if (b.ptr == nullptr) {
|
|
b.ptr = ptr;
|
|
b.size = size;
|
|
return;
|
|
}
|
|
}
|
|
fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_SYCL_BUFFERS\n");
|
|
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *stream)));
|
|
g_sycl_pool_size[id] -= size;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
// pool with virtual memory
|
|
/*
|
|
DPCT1082:64: Migration of CUmemGenericAllocationHandle type is not supported.
|
|
*/
|
|
// static std::vector<CUmemGenericAllocationHandle>
|
|
// g_sycl_pool_handles[GGML_SYCL_MAX_DEVICES];
|
|
static dpct::device_ptr g_sycl_pool_addr[GGML_SYCL_MAX_DEVICES] = {0};
|
|
static size_t g_sycl_pool_used[GGML_SYCL_MAX_DEVICES] = {0};
|
|
|
|
static void *ggml_sycl_pool_malloc_vmm(size_t size, size_t *actual_size) try {
|
|
GGML_UNUSED(size);
|
|
GGML_UNUSED(actual_size);
|
|
return NULL;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_pool_free_vmm(void *ptr, size_t size) try {
|
|
scoped_spin_lock lock(g_sycl_pool_lock);
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = dpct::dev_mgr::instance().current_device_id()));
|
|
|
|
#ifdef DEBUG_SYCL_MALLOC
|
|
printf("sycl pool[%d]: freed %llu bytes at %llx\n", id, (unsigned long long) size, ptr);
|
|
#endif
|
|
|
|
g_sycl_pool_used[id] -= size;
|
|
|
|
// all deallocations must be in reverse order of the allocations
|
|
GGML_ASSERT(ptr == (void *) (g_sycl_pool_addr[id] + g_sycl_pool_used[id]));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void *ggml_sycl_pool_malloc(size_t size, size_t *actual_size) try {
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
if (g_device_caps[id].vmm) {
|
|
return ggml_sycl_pool_malloc_vmm(size, actual_size);
|
|
} else {
|
|
return ggml_sycl_pool_malloc_leg(size, actual_size);
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_pool_free(void *ptr, size_t size) try {
|
|
int id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
if (g_device_caps[id].vmm) {
|
|
ggml_sycl_pool_free_vmm(ptr, size);
|
|
} else {
|
|
ggml_sycl_pool_free_leg(ptr, size);
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
struct sycl_pool_alloc {
|
|
T * ptr = nullptr;
|
|
size_t actual_size = 0;
|
|
|
|
// size is in number of elements
|
|
T * alloc(size_t size) {
|
|
GGML_ASSERT(ptr == nullptr);
|
|
ptr = (T *) ggml_sycl_pool_malloc(size * sizeof(T), &this->actual_size);
|
|
// GGML_SYCL_DEBUG("alloc %lu return %p actual size=%lu\n", size * sizeof(T), ptr, this->actual_size);
|
|
return ptr;
|
|
}
|
|
|
|
sycl_pool_alloc(size_t size) {
|
|
alloc(size);
|
|
}
|
|
|
|
~sycl_pool_alloc() {
|
|
if (ptr != nullptr) {
|
|
ggml_sycl_pool_free(ptr, actual_size);
|
|
}
|
|
}
|
|
|
|
T * get() {
|
|
return ptr;
|
|
}
|
|
|
|
sycl_pool_alloc() = default;
|
|
sycl_pool_alloc(const sycl_pool_alloc &) = delete;
|
|
sycl_pool_alloc(sycl_pool_alloc &&) = delete;
|
|
sycl_pool_alloc& operator=(const sycl_pool_alloc &) = delete;
|
|
sycl_pool_alloc& operator=(sycl_pool_alloc &&) = delete;
|
|
};
|
|
|
|
static bool g_sycl_loaded = false;
|
|
|
|
bool ggml_sycl_loaded(void) {
|
|
return g_sycl_loaded;
|
|
}
|
|
|
|
void ggml_backend_sycl_print_sycl_devices(){
|
|
int device_count = dpct::dev_mgr::instance().device_count();
|
|
fprintf(stderr, "found %d SYCL devices:\n", device_count);
|
|
for (int id = 0; id < device_count; ++id) {
|
|
dpct::device_info prop;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
|
prop, dpct::dev_mgr::instance().get_device(id))));
|
|
sycl::device cur_device = dpct::dev_mgr::instance().get_device(id);
|
|
fprintf(stderr, " Device %d: %s,\tcompute capability %d.%d,\n\tmax compute_units %d,\tmax work group size %d,\tmax sub group size %d,\tglobal mem size %lu\n", id,
|
|
prop.get_name(), prop.get_major_version(),
|
|
prop.get_minor_version(),
|
|
prop.get_max_compute_units(),
|
|
prop.get_max_work_group_size(),
|
|
prop.get_max_sub_group_size(),
|
|
prop.get_global_mem_size()
|
|
);
|
|
}
|
|
// fprintf(stderr, "\n");
|
|
}
|
|
|
|
int get_sycl_env(const char* env_name, int default_val){
|
|
char * user_device_string = getenv(env_name);
|
|
int user_number = default_val;
|
|
|
|
unsigned n;
|
|
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1) {
|
|
user_number = (int)n;
|
|
} else {
|
|
user_number=default_val;
|
|
}
|
|
return user_number;
|
|
}
|
|
|
|
int get_work_group_size(int user_device_id){
|
|
dpct::device_info prop;
|
|
dpct::get_device_info(
|
|
prop,
|
|
dpct::dev_mgr::instance().get_device(user_device_id));
|
|
return prop.get_max_work_group_size();
|
|
}
|
|
|
|
void ggml_init_sycl() try {
|
|
static bool initialized = false;
|
|
|
|
if (!initialized) {
|
|
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
|
|
|
|
printf("GGML_SYCL_DEBUG=%d\n", g_ggml_sycl_debug);
|
|
|
|
int user_device_id = get_sycl_env("GGML_SYCL_DEVICE", 0);
|
|
|
|
if (CHECK_TRY_ERROR(g_all_sycl_device_count =
|
|
dpct::dev_mgr::instance().device_count()) !=
|
|
0) {
|
|
initialized = true;
|
|
g_sycl_loaded = false;
|
|
return;
|
|
}
|
|
GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
|
|
int64_t total_vram = 0;
|
|
|
|
#if defined(GGML_SYCL_F16)
|
|
fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
|
|
#else
|
|
fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
|
|
#endif
|
|
|
|
|
|
#if defined(SYCL_USE_XMX)
|
|
fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
|
|
#else
|
|
fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
|
|
#endif
|
|
ggml_backend_sycl_print_sycl_devices();
|
|
for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) {
|
|
g_sycl_device_id2index[id].index = -1;
|
|
g_device_caps[id].vmm = 0;
|
|
g_device_caps[id].device_id = -1;
|
|
g_device_caps[id].cc = 0;
|
|
g_tensor_split[id] = 0;
|
|
}
|
|
|
|
int device_inx = -1;
|
|
for (int id = 0; id < g_all_sycl_device_count; ++id) {
|
|
if(id!=user_device_id) continue;
|
|
|
|
device_inx++;
|
|
|
|
g_device_caps[device_inx].vmm = 0;
|
|
g_device_caps[device_inx].device_id = id;
|
|
g_sycl_device_id2index[id].index = device_inx;
|
|
|
|
dpct::device_info prop;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
|
prop, dpct::dev_mgr::instance().get_device(id))));
|
|
|
|
g_tensor_split[device_inx] = total_vram;
|
|
total_vram += prop.get_global_mem_size();
|
|
|
|
g_device_caps[device_inx].cc =
|
|
100 * prop.get_major_version() + 10 * prop.get_minor_version();
|
|
|
|
}
|
|
device_inx = -1;
|
|
for (int id = 0; id < g_all_sycl_device_count; ++id) {
|
|
if(id!=user_device_id) continue;
|
|
device_inx++;
|
|
g_tensor_split[device_inx] /= total_vram;
|
|
}
|
|
|
|
device_inx = -1;
|
|
for (int id = 0; id < g_all_sycl_device_count; ++id) {
|
|
if(id!=user_device_id) continue;
|
|
device_inx++;
|
|
SYCL_CHECK(ggml_sycl_set_device(id));
|
|
|
|
// create sycl streams
|
|
for (int is = 0; is < MAX_STREAMS; ++is) {
|
|
/*
|
|
DPCT1025:88: The SYCL queue is created ignoring the flag and
|
|
priority options.
|
|
*/
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
g_syclStreams[device_inx][is] =
|
|
dpct::get_current_device().create_queue()));
|
|
}
|
|
|
|
const dpct::queue_ptr stream = g_syclStreams[device_inx][0];
|
|
// create sycl handle
|
|
SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[device_inx] =
|
|
stream));
|
|
/*
|
|
DPCT1027:89: The call to syclSetMathMode was replaced with 0
|
|
because this functionality is redundant in SYCL.
|
|
*/
|
|
SYCL_CHECK(0);
|
|
}
|
|
|
|
// configure logging to stdout
|
|
// SYCL_CHECK(syclLoggerConfigure(1, 1, 0, nullptr));
|
|
|
|
//hardcode, force set to 1 device
|
|
g_device_count = 1;
|
|
ggml_sycl_set_main_device(user_device_id);
|
|
ggml_sycl_set_device(user_device_id);
|
|
g_work_group_size = get_work_group_size(user_device_id);
|
|
// fprintf(stderr, "Using Device %d\n", user_device_id);
|
|
|
|
// for (int id = 0; id < g_all_sycl_device_count; ++id) {
|
|
// GGML_SYCL_DEBUG("id=%d g_device_caps[%d].device_id=%d g_sycl_device_id2index[%d].index=%d ", id, id,
|
|
// g_device_caps[id].device_id, id, g_sycl_device_id2index[id].index);
|
|
// }
|
|
|
|
initialized = true;
|
|
g_sycl_loaded = true;
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
|
|
void ggml_sycl_set_tensor_split(const float * tensor_split) {
|
|
if (tensor_split == nullptr) {
|
|
return;
|
|
}
|
|
bool all_zero = true;
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
if (tensor_split[i] != 0.0f) {
|
|
all_zero = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_zero) {
|
|
return;
|
|
}
|
|
float split_sum = 0.0f;
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
g_tensor_split[i] = split_sum;
|
|
split_sum += tensor_split[i];
|
|
}
|
|
for (int i = 0; i < g_device_count; ++i) {
|
|
g_tensor_split[i] /= split_sum;
|
|
}
|
|
}
|
|
|
|
void *ggml_sycl_host_malloc(size_t size) try {
|
|
if (getenv("GGML_SYCL_NO_PINNED") != nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
void * ptr = nullptr;
|
|
//allow to use dpct::get_in_order_queue() for host malloc
|
|
dpct::err0 err = CHECK_TRY_ERROR(
|
|
ptr = (void *)sycl::malloc_host(size, dpct::get_in_order_queue()));
|
|
/*
|
|
DPCT1000:82: Error handling if-stmt was detected but could not be rewritten.
|
|
*/
|
|
if (err != 0) {
|
|
// clear the error
|
|
/*
|
|
DPCT1026:83: The call to syclGetLastError was removed because this
|
|
functionality is redundant in SYCL.
|
|
*/
|
|
/*
|
|
DPCT1001:81: The statement could not be removed.
|
|
*/
|
|
fprintf(
|
|
stderr,
|
|
"WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
|
/*
|
|
DPCT1009:84: SYCL uses exceptions to report errors and does not use
|
|
the error codes. The original code was commented out and a warning
|
|
string was inserted. You need to rewrite this code.
|
|
*/
|
|
size / 1024.0 / 1024.0,
|
|
"syclGetErrorString is not supported" /*syclGetErrorString(err)*/);
|
|
return nullptr;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
void ggml_sycl_host_free(void *ptr) try {
|
|
//allow to use dpct::get_in_order_queue() for host malloc
|
|
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, dpct::get_in_order_queue())));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
|
|
const struct ggml_tensor *src,
|
|
int64_t i3, int64_t i2,
|
|
int64_t i1_low, int64_t i1_high,
|
|
dpct::queue_ptr stream) try {
|
|
|
|
dpct::memcpy_direction kind;
|
|
char * src_ptr;
|
|
if (src->backend == GGML_BACKEND_TYPE_CPU) {
|
|
kind = dpct::host_to_device;
|
|
src_ptr = (char *) src->data;
|
|
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
|
|
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
|
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
|
kind = dpct::device_to_device;
|
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
|
int id;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
id = get_current_device_index()));
|
|
// GGML_SYCL_DEBUG("current device index %d\n", id);
|
|
src_ptr = (char *) extra->data_device[id];
|
|
} else {
|
|
// GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
|
|
GGML_ASSERT(false);
|
|
}
|
|
char * dst_ptr = (char *) dst;
|
|
|
|
GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
|
|
GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
|
|
const enum ggml_type type = src->type;
|
|
const int64_t ts = ggml_type_size(type);
|
|
const int64_t bs = ggml_blck_size(type);
|
|
int64_t i1_diff = i1_high - i1_low;
|
|
|
|
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
|
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
|
// GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
|
|
// return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
|
|
return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
|
|
kind, *stream));
|
|
|
|
} else if (nb0 == ts) {
|
|
return CHECK_TRY_ERROR(
|
|
dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
|
|
ts * ne0 / bs, i1_diff, kind, *stream));
|
|
} else {
|
|
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
|
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
|
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
|
// pretend the row is a matrix with cols=1
|
|
dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
|
|
rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
|
|
/*
|
|
DPCT1001:85: The statement could not be removed.
|
|
*/
|
|
/*
|
|
DPCT1000:86: Error handling if-stmt was detected but could not be
|
|
rewritten.
|
|
*/
|
|
if (r != 0) return r;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_op_get_rows(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_d, const float *src1_d,
|
|
float *dst_d, const dpct::queue_ptr &stream) {
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
|
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
|
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
|
|
|
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
get_rows_sycl_float(src0, src1, dst, (const sycl::half *)src0_d,
|
|
src1_i32, dst_d, stream);
|
|
break;
|
|
case GGML_TYPE_F32:
|
|
get_rows_sycl_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_0:
|
|
get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
|
break;
|
|
default:
|
|
// TODO: k-quants
|
|
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <class op>
|
|
inline void ggml_sycl_op_bin_bcast(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
|
|
(sycl::half *)dst_dd, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
|
op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
|
|
main_stream);
|
|
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
|
|
op()(src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
|
|
main_stream);
|
|
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
|
|
op()(src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
|
|
main_stream);
|
|
} else {
|
|
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
|
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static void ggml_sycl_op_repeat(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_d, const float *src1_d,
|
|
float *dst_d,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
|
|
|
|
(void) src1;
|
|
(void) src1_d;
|
|
}
|
|
|
|
inline void ggml_sycl_op_add(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
|
}
|
|
|
|
inline void ggml_sycl_op_acc(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
|
|
|
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
|
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
|
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
|
int offset = dst->op_params[3] / 4; // offset in bytes
|
|
|
|
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
|
|
|
|
(void) dst;
|
|
}
|
|
|
|
inline void ggml_sycl_op_mul(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
|
}
|
|
|
|
inline void ggml_sycl_op_div(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
|
}
|
|
|
|
inline void ggml_sycl_op_gelu(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_silu(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_gelu_quick(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_tanh(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_relu(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_leaky_relu(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
float negative_slope;
|
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
|
|
|
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_sqr(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_norm(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_group_norm(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
int num_groups = dst->op_params[0];
|
|
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
|
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_concat(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
|
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
|
concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
}
|
|
|
|
inline void ggml_sycl_op_upscale(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
|
|
|
const int scale_factor = dst->op_params[0];
|
|
|
|
upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_pad(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
|
|
|
pad_f32_sycl(src0_dd, dst_dd,
|
|
src0->ne[0], src0->ne[1], src0->ne[2],
|
|
dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_rms_norm(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_mul_mat_q(
|
|
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
|
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
|
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
|
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
|
const dpct::queue_ptr &stream) try {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
int device_id;
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(device_id = dpct::dev_mgr::instance().current_device_id()));
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
|
|
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_ddf_i;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static int64_t get_row_rounding(ggml_type type) {
|
|
int64_t min_compute_capability = INT_MAX;
|
|
int64_t max_compute_capability = INT_MIN;
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
|
|
if (min_compute_capability > g_device_caps[id].cc) {
|
|
min_compute_capability = g_device_caps[id].cc;
|
|
}
|
|
if (max_compute_capability < g_device_caps[id].cc) {
|
|
max_compute_capability = g_device_caps[id].cc;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch(type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
return max_compute_capability >= VER_GEN9 ? 128 : 64;
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return 64;
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_F32:
|
|
return 1;
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
return max_compute_capability >= VER_GEN9 ? 128 : 64;
|
|
case GGML_TYPE_Q6_K:
|
|
return 64;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
inline void ggml_sycl_op_mul_mat_vec_q(
|
|
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
|
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
|
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
|
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
|
const dpct::queue_ptr &stream) {
|
|
|
|
GGML_ASSERT(ggml_nrows(src1) == 1);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
// TODO: support these quantization types
|
|
GGML_ASSERT(!(src0->type == GGML_TYPE_IQ2_XXS ||
|
|
src0->type == GGML_TYPE_IQ2_XS ||
|
|
src0->type == GGML_TYPE_IQ3_XXS ||
|
|
src0->type == GGML_TYPE_IQ1_S));
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
mul_mat_vec_q_sycl_submitter<QK4_0, QI4_0, block_q4_0,
|
|
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
mul_mat_vec_q_sycl_submitter<QK4_1, QI4_1, block_q4_1,
|
|
VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
mul_mat_vec_q_sycl_submitter<QK5_0, QI5_0, block_q5_0,
|
|
VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
mul_mat_vec_q_sycl_submitter<QK5_1, QI5_1, block_q5_1,
|
|
VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
mul_mat_vec_q_sycl_submitter<QK8_0, QI8_0, block_q8_0,
|
|
VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
mul_mat_vec_q_sycl_submitter<QK_K, QI2_K, block_q2_K,
|
|
VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
mul_mat_vec_q_sycl_submitter<QK_K, QI3_K, block_q3_K,
|
|
VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
mul_mat_vec_q_sycl_submitter<QK_K, QI4_K, block_q4_K,
|
|
VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
mul_mat_vec_q_sycl_submitter<QK_K, QI5_K, block_q5_K,
|
|
VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
mul_mat_vec_q_sycl_submitter<QK_K, QI6_K, block_q6_K,
|
|
VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
|
|
src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_ddf_i;
|
|
(void) src1_ncols;
|
|
(void) src1_padded_row_size;
|
|
}
|
|
|
|
inline void ggml_sycl_op_dequantize_mul_mat_vec(
|
|
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
|
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
|
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
|
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
|
const dpct::queue_ptr &stream) {
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
|
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
|
#ifdef GGML_SYCL_F16
|
|
sycl_pool_alloc<sycl::half> src1_dfloat_a;
|
|
sycl::half *src1_dfloat = nullptr; // dfloat == half
|
|
|
|
bool src1_convert_f16 =
|
|
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
|
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
|
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
|
|
|
if (src1_convert_f16) {
|
|
if (src1->type == GGML_TYPE_F16) {
|
|
src1_dfloat = (sycl::half *)src1->data + src1_padded_row_size;
|
|
} else {
|
|
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
|
ggml_cpy_f32_f16_sycl((const char *)src1_ddf_i, (char *)src1_dfloat,
|
|
ne00, ne00, ne01, ne02, nb00, nb01, nb02,
|
|
nb03, ne10, ne11, ne12, nb10, nb11, nb12,
|
|
nb13, stream);
|
|
}
|
|
}
|
|
#else
|
|
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
|
#endif // GGML_SYCL_F16
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_ddq_i;
|
|
(void) src1_ncols;
|
|
(void) src1_padded_row_size;
|
|
}
|
|
|
|
inline void ggml_sycl_op_mul_mat_sycl(
|
|
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
|
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
|
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
|
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
|
const dpct::queue_ptr &stream) try {
|
|
|
|
GGML_ASSERT(src0_dd_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_dd_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
int id;
|
|
int device_id = dpct::dev_mgr::instance().current_device_id();
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(id = get_current_device_index()));
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// ldc == nrows of the matrix that cuBLAS writes into
|
|
int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
bool use_fp16 = true; // TODO(Yu) SYCL capability check
|
|
#else
|
|
bool use_fp16 = false;
|
|
#endif
|
|
// if (compute_capability >= VER_GEN9 && (src0->type == GGML_TYPE_F16 ||
|
|
// ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff ==
|
|
// src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
|
|
if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
|
|
dst->op_params[0] == GGML_PREC_DEFAULT) {
|
|
|
|
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
|
|
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
|
|
sycl_pool_alloc<sycl::half> src0_as_f16;
|
|
if (src0->type != GGML_TYPE_F16) {
|
|
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
|
|
GGML_ASSERT(to_fp16_sycl != nullptr);
|
|
size_t ne = row_diff*ne00;
|
|
src0_as_f16.alloc(ne);
|
|
to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
|
|
}
|
|
const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
|
|
? (const sycl::half *)src0_dd_i
|
|
: src0_as_f16.get();
|
|
|
|
sycl_pool_alloc<sycl::half> src1_as_f16;
|
|
if (src1->type != GGML_TYPE_F16) {
|
|
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
|
|
GGML_ASSERT(to_fp16_sycl != nullptr);
|
|
size_t ne = src1_ncols*ne10;
|
|
src1_as_f16.alloc(ne);
|
|
to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
|
|
}
|
|
const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
|
|
? (const sycl::half *)src1->data + src1_padded_row_size
|
|
: src1_as_f16.get();
|
|
sycl_pool_alloc<sycl::half> dst_f16(row_diff * src1_ncols);
|
|
|
|
const sycl::half alpha_f16 = 1.0f;
|
|
const sycl::half beta_f16 = 0.0f;
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
|
|
*g_sycl_handles[id], oneapi::mkl::transpose::trans,
|
|
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
|
&alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
|
|
src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
|
|
dst_f16.get(), dpct::library_data_t::real_half, ldc,
|
|
dpct::library_data_t::real_half)));
|
|
|
|
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
|
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
|
}
|
|
else {
|
|
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
|
|
sycl_pool_alloc<float> src0_ddq_as_f32;
|
|
|
|
if (src0->type != GGML_TYPE_F32) {
|
|
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
|
|
GGML_ASSERT(to_fp32_sycl != nullptr);
|
|
src0_ddq_as_f32.alloc(row_diff*ne00);
|
|
to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
|
|
}
|
|
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
|
|
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
|
|
*g_sycl_handles[id], oneapi::mkl::transpose::trans,
|
|
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
|
dpct::get_value(&alpha, *g_sycl_handles[id]), src0_ddf_i, ne00,
|
|
src1_ddf_i, ne10, dpct::get_value(&beta, *g_sycl_handles[id]),
|
|
dst_dd_i, ldc)));
|
|
}
|
|
|
|
(void) dst;
|
|
(void) src1_ddq_i;
|
|
(void) src1_padded_row_size;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src0->type == dst->type);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
|
const int mode = ((int32_t *) dst->op_params)[2];
|
|
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
|
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
|
|
|
// RoPE alteration for extended context
|
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
|
|
|
const int32_t * pos = nullptr;
|
|
if ((mode & 1) == 0) {
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(src1->ne[0] == ne2);
|
|
pos = (const int32_t *) src1_dd;
|
|
}
|
|
|
|
const bool is_neox = mode & 2;
|
|
const bool is_glm = mode & 4;
|
|
|
|
rope_corr_dims corr_dims;
|
|
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
|
|
|
|
// compute
|
|
if (is_glm) {
|
|
GGML_ASSERT(false);
|
|
rope_glm_f32_sycl(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
|
|
} else if (is_neox) {
|
|
if (src0->type == GGML_TYPE_F32) {
|
|
rope_neox_sycl(
|
|
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
|
attn_factor, corr_dims, main_stream
|
|
);
|
|
} else if (src0->type == GGML_TYPE_F16) {
|
|
rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
|
|
ne00, n_dims, nrows, pos, freq_scale, ne01,
|
|
freq_base, ext_factor, attn_factor, corr_dims,
|
|
main_stream);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
} else {
|
|
if (src0->type == GGML_TYPE_F32) {
|
|
rope_sycl(
|
|
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
|
attn_factor, corr_dims, main_stream
|
|
);
|
|
} else if (src0->type == GGML_TYPE_F16) {
|
|
rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
|
|
nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
|
attn_factor, corr_dims, main_stream);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne);
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
|
const int n_head = ((int32_t *) dst->op_params)[1];
|
|
float max_bias;
|
|
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
|
|
|
//GGML_ASSERT(ne01 + n_past == ne00);
|
|
GGML_ASSERT(n_head == ne02);
|
|
|
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
|
|
|
alibi_f32_sycl(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
|
|
|
|
(void) src1;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
|
|
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
|
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
|
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
|
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
|
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
|
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
|
|
|
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
|
|
|
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
|
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
|
const int64_t IW = src1->ne[0];
|
|
|
|
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
|
const int64_t KW = src0->ne[0];
|
|
|
|
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
|
const int64_t OW = dst->ne[1];
|
|
|
|
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
|
|
|
if (dst->type == GGML_TYPE_F16) {
|
|
im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
|
} else {
|
|
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
|
}
|
|
|
|
(void) src0;
|
|
(void) src0_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_sum_rows(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ncols = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_argsort(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
|
|
|
const int64_t ncols = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
|
|
|
argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_diag_mask_inf(const ggml_tensor *src0,
|
|
const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int nrows0 = ggml_nrows(src0);
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
|
|
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows_x = ggml_nrows(src0);
|
|
const int64_t nrows_y = src0->ne[1];
|
|
|
|
float scale = 1.0f;
|
|
float max_bias = 0.0f;
|
|
|
|
memcpy(&scale, dst->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
|
|
|
|
// positions tensor
|
|
float * src2_dd = nullptr;
|
|
sycl_pool_alloc<float> src2_f;
|
|
|
|
ggml_tensor * src2 = dst->src[2];
|
|
const bool use_src2 = src2 != nullptr;
|
|
|
|
if (use_src2) {
|
|
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
|
|
|
|
if (src2_on_device) {
|
|
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
|
src2_dd = (float *) src2_extra->data_device[g_main_device];
|
|
} else {
|
|
src2_dd = src2_f.alloc(ggml_nelements(src2));
|
|
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
|
|
}
|
|
}
|
|
|
|
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00,
|
|
nrows_x, nrows_y, scale, max_bias, main_stream);
|
|
}
|
|
|
|
inline void ggml_sycl_op_scale(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
float scale;
|
|
memcpy(&scale, dst->op_params, sizeof(float));
|
|
|
|
scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
|
|
/*
|
|
DPCT1010:87: SYCL uses exceptions to report errors and does not use the
|
|
error codes. The call was replaced with 0. You need to rewrite this code.
|
|
*/
|
|
SYCL_CHECK(0);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
inline void ggml_sycl_op_clamp(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const dpct::queue_ptr &main_stream) {
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
float min;
|
|
float max;
|
|
memcpy(&min, dst->op_params, sizeof(float));
|
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
|
|
|
clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
|
|
/*
|
|
DPCT1010:88: SYCL uses exceptions to report errors and does not use the
|
|
error codes. The call was replaced with 0. You need to rewrite this code.
|
|
*/
|
|
SYCL_CHECK(0);
|
|
|
|
(void) src1;
|
|
(void) dst;
|
|
(void) src1_dd;
|
|
}
|
|
|
|
static void ggml_sycl_op_flatten(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const ggml_sycl_op_flatten_t op) try {
|
|
const int64_t nrows0 = ggml_nrows(src0);
|
|
|
|
const bool use_src1 = src1 != nullptr;
|
|
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
|
|
|
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
|
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
|
|
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
|
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
|
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
|
|
|
|
// dd = data device
|
|
float * src0_ddf = nullptr;
|
|
float * src1_ddf = nullptr;
|
|
float * dst_ddf = nullptr;
|
|
|
|
sycl_pool_alloc<float> src0_f;
|
|
sycl_pool_alloc<float> src1_f;
|
|
sycl_pool_alloc<float> dst_f;
|
|
|
|
ggml_sycl_set_device(g_main_device);
|
|
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
|
|
// GGML_SYCL_DEBUG("g_main_device_index=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
|
|
// g_main_device_index, main_stream, src0_on_device, src1_on_device, dst_on_device);
|
|
|
|
if (src0_on_device) {
|
|
src0_ddf = (float *) src0_extra->data_device[g_main_device_index];
|
|
} else {
|
|
src0_ddf = src0_f.alloc(ggml_nelements(src0));
|
|
// GGML_SYCL_DEBUG("before ggml_sycl_cpy_tensor_2d src0_ddf=%p, src0=%p\n", src0_ddf, src0);
|
|
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
|
|
}
|
|
|
|
if (use_src1) {
|
|
if (src1_on_device) {
|
|
src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
|
|
} else {
|
|
src1_ddf = src1_f.alloc(ggml_nelements(src1));
|
|
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
|
|
}
|
|
}
|
|
if (dst_on_device) {
|
|
dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
|
|
// printf("zjy dst_ddf=%p main_stream=%p g_main_device_index=%d\n", dst_ddf, main_stream, g_main_device_index);
|
|
} else {
|
|
dst_ddf = dst_f.alloc(ggml_nelements(dst));
|
|
}
|
|
|
|
// GGML_SYCL_DEBUG("op src0=%p, src1=%p, dst=%p, src0_ddf=%p, src1_ddf=%p, dst_ddf=%p, main_stream=%p\n",
|
|
// src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
|
|
// do the computation
|
|
op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
|
|
/*
|
|
DPCT1010:89: SYCL uses exceptions to report errors and does not use the
|
|
error codes. The call was replaced with 0. You need to rewrite this code.
|
|
*/
|
|
SYCL_CHECK(0);
|
|
|
|
// copy dst to host if necessary
|
|
if (!dst_on_device) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst))));
|
|
}
|
|
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
dpct::get_current_device().queues_wait_and_throw()));
|
|
}
|
|
// print_ggml_tensor("tensor", dst);
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_set_peer_access(const int n_tokens) {
|
|
static bool peer_access_enabled = false;
|
|
|
|
const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
|
|
|
|
if (peer_access_enabled == enable_peer_access) {
|
|
return;
|
|
}
|
|
|
|
#ifdef NDEBUG
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
|
|
// SYCL_CHECK(syclDeviceSynchronize());
|
|
}
|
|
|
|
for (int id = 0; id < g_device_count; ++id) {
|
|
SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
|
|
int device_id = g_device_caps[id].device_id;
|
|
|
|
for (int id_other = 0; id_other < g_device_count; ++id_other) {
|
|
int device_id_other = g_device_caps[id_other].device_id;
|
|
if (device_id == id_other) {
|
|
continue;
|
|
}
|
|
if (device_id != g_main_device && device_id_other != g_main_device) {
|
|
continue;
|
|
}
|
|
|
|
// int can_access_peer;
|
|
// SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
|
|
// if (can_access_peer) {
|
|
// if (enable_peer_access) {
|
|
// SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
|
|
// } else {
|
|
// SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
|
|
// }
|
|
// }
|
|
}
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
peer_access_enabled = enable_peer_access;
|
|
}
|
|
|
|
static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
ggml_sycl_op_mul_mat_t op,
|
|
const bool convert_src1_to_q8_1) try {
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
|
const int64_t nrows1 = ggml_nrows(src1);
|
|
|
|
GGML_ASSERT(ne03 == ne13);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
|
|
|
|
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
|
|
|
const int64_t i02_divisor = ne12 / ne02;
|
|
|
|
const size_t src0_ts = ggml_type_size(src0->type);
|
|
const size_t src0_bs = ggml_blck_size(src0->type);
|
|
const size_t q8_1_ts = sizeof(block_q8_1);
|
|
const size_t q8_1_bs = QK8_1;
|
|
|
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
|
|
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
|
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
|
|
|
int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
|
|
|
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
|
GGML_ASSERT(!(split && ne02 > 1));
|
|
GGML_ASSERT(!(split && ne03 > 1));
|
|
GGML_ASSERT(!(split && ne02 < ne12));
|
|
|
|
// dd = data device
|
|
char * src0_dd[GGML_SYCL_MAX_DEVICES] = {nullptr};
|
|
float * src1_ddf[GGML_SYCL_MAX_DEVICES] = {nullptr}; // float
|
|
char * src1_ddq[GGML_SYCL_MAX_DEVICES] = {nullptr}; // q8_1
|
|
float * dst_dd[GGML_SYCL_MAX_DEVICES] = {nullptr};
|
|
|
|
// as = actual size
|
|
size_t src0_as[GGML_SYCL_MAX_DEVICES] = {0};
|
|
size_t src1_asf[GGML_SYCL_MAX_DEVICES] = {0};
|
|
size_t src1_asq[GGML_SYCL_MAX_DEVICES] = {0};
|
|
size_t dst_as[GGML_SYCL_MAX_DEVICES] = {0};
|
|
|
|
int64_t row_low[GGML_SYCL_MAX_DEVICES];
|
|
int64_t row_high[GGML_SYCL_MAX_DEVICES];
|
|
|
|
int used_devices = 0;
|
|
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
// by default, use all rows
|
|
row_low[id] = 0;
|
|
row_high[id] = ne01;
|
|
|
|
// for multi GPU, get the row boundaries from tensor split
|
|
// and round to mul_mat_q tile sizes
|
|
if (split) {
|
|
const int64_t rounding = get_row_rounding(src0->type);
|
|
|
|
if (id != 0) {
|
|
row_low[id] = ne01*g_tensor_split[id];
|
|
if (row_low[id] < ne01) {
|
|
row_low[id] -= row_low[id] % rounding;
|
|
}
|
|
}
|
|
|
|
if (id != g_device_count - 1) {
|
|
row_high[id] = ne01*g_tensor_split[id + 1];
|
|
if (row_high[id] < ne01) {
|
|
row_high[id] -= row_high[id] % rounding;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
|
|
if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
|
|
continue;
|
|
}
|
|
|
|
used_devices++;
|
|
|
|
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
|
|
|
ggml_sycl_set_device(get_device_id_by_index(id));
|
|
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
|
|
|
if (src0_on_device && src0_is_contiguous) {
|
|
src0_dd[id] = (char *) src0_extra->data_device[id];
|
|
} else {
|
|
// const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
|
|
src0_dd[id] = (char *) ggml_sycl_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
|
|
}
|
|
|
|
if (src1_on_device && src1_is_contiguous) {
|
|
src1_ddf[id] = (float *) src1_extra->data_device[id];
|
|
} else {
|
|
src1_ddf[id] = (float *) ggml_sycl_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
|
|
}
|
|
|
|
if (convert_src1_to_q8_1) {
|
|
src1_ddq[id] = (char *) ggml_sycl_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
|
|
|
|
if (src1_on_device && src1_is_contiguous) {
|
|
quantize_row_q8_1_sycl(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
|
|
/*
|
|
DPCT1010:90: SYCL uses exceptions to report errors and does not
|
|
use the error codes. The call was replaced with 0. You need to
|
|
rewrite this code.
|
|
*/
|
|
SYCL_CHECK(0);
|
|
}
|
|
}
|
|
|
|
if (dst_on_device) {
|
|
dst_dd[id] = (float *) dst_extra->data_device[id];
|
|
} else {
|
|
const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
|
|
dst_dd[id] = (float *) ggml_sycl_pool_malloc(size_dst_ddf, &dst_as[id]);
|
|
}
|
|
}
|
|
|
|
// if multiple devices are used they need to wait for the main device
|
|
// here an event is recorded that signals that the main device has finished calculating the input data
|
|
if (split && used_devices > 1) {
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
/*
|
|
DPCT1024:91: The original code returned the error code that was further
|
|
consumed by the program logic. This original code was replaced with 0.
|
|
You may need to rewrite the program logic consuming the error code.
|
|
*/
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
*src0_extra->events[g_main_device_index][0] =
|
|
g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier()));
|
|
}
|
|
|
|
const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
|
|
for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
|
|
const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
|
|
const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
|
|
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
|
|
continue;
|
|
}
|
|
|
|
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
|
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
|
const int64_t row_diff = row_high[id] - row_low[id];
|
|
|
|
ggml_sycl_set_device(get_device_id_by_index(id));
|
|
const dpct::queue_ptr stream = g_syclStreams[id][is];
|
|
|
|
// wait for main GPU data if necessary
|
|
if (split && (id != g_main_device_index || is != 0)) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
|
|
{*src0_extra->events[g_main_device_index][0]})));
|
|
}
|
|
|
|
for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
|
|
const int64_t i03 = i0 / ne12;
|
|
const int64_t i02 = i0 % ne12;
|
|
|
|
const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
|
|
|
|
// for split tensors the data begins at i0 == i0_offset_low
|
|
char * src0_dd_i = src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
|
|
float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10;
|
|
char * src1_ddq_i = src1_ddq[id] + src1_ddq_i_offset;
|
|
float * dst_dd_i = dst_dd[id] + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
|
|
|
|
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
|
// in that case an offset on dst_ddf_i is needed
|
|
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index) {
|
|
dst_dd_i += row_low[id]; // offset is 0 if no tensor split
|
|
}
|
|
|
|
// copy src0, src1 to device if necessary
|
|
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
|
|
if (id != g_main_device_index) {
|
|
if (convert_src1_to_q8_1) {
|
|
char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
|
|
src1_ddq_i, src1_ddq_i_source,
|
|
src1_ncols * src1_padded_col_size * q8_1_ts /
|
|
q8_1_bs)));
|
|
} else {
|
|
float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device_index];
|
|
src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
|
|
src1_ddf_i, src1_ddf_i_source,
|
|
src1_ncols * ne10 * sizeof(float))));
|
|
}
|
|
}
|
|
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
|
|
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
|
|
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
|
|
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
|
/*
|
|
DPCT1010:92: SYCL uses exceptions to report errors and does
|
|
not use the error codes. The call was replaced with 0. You
|
|
need to rewrite this code.
|
|
*/
|
|
SYCL_CHECK(0);
|
|
}
|
|
|
|
if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
|
|
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream));
|
|
}
|
|
if (src1->type == GGML_TYPE_F16) {
|
|
src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
|
|
}
|
|
// do the computation
|
|
op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
|
|
row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream);
|
|
/*
|
|
DPCT1010:93: SYCL uses exceptions to report errors and does not
|
|
use the error codes. The call was replaced with 0. You need to
|
|
rewrite this code.
|
|
*/
|
|
SYCL_CHECK(0);
|
|
|
|
// copy dst to host or other device if necessary
|
|
if (!dst_on_device) {
|
|
void * dst_off_device;
|
|
dpct::memcpy_direction kind;
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
dst_off_device = dst->data;
|
|
kind = dpct::device_to_host;
|
|
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
|
|
dst_off_device = dst_extra->data_device[g_main_device_index];
|
|
kind = dpct::device_to_device;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
if (split) {
|
|
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
|
|
// dst is NOT transposed.
|
|
// The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
|
|
// Instead they need to be copied to the correct slice in ne0 = dst row index.
|
|
// If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
|
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
|
dhf_dst_i += src1_col_0*ne0 + row_low[id];
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
|
|
dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
|
|
row_diff * sizeof(float), row_diff * sizeof(float),
|
|
src1_ncols, kind, *stream)));
|
|
} else {
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
|
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
|
dhf_dst_i += src1_col_0*ne0;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
stream->memcpy(dhf_dst_i, dst_dd_i,
|
|
src1_ncols * ne0 * sizeof(float))));
|
|
}
|
|
}
|
|
|
|
// add event for the main device to wait on until other device is done
|
|
if (split && (id != g_main_device_index || is != 0)) {
|
|
/*
|
|
DPCT1024:94: The original code returned the error code that
|
|
was further consumed by the program logic. This original
|
|
code was replaced with 0. You may need to rewrite the
|
|
program logic consuming the error code.
|
|
*/
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
*src0_extra->events[id][is] =
|
|
stream->ext_oneapi_submit_barrier()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
|
|
continue;
|
|
}
|
|
SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
|
|
|
|
// free buffers again when done
|
|
if (dst_as[id] > 0) {
|
|
ggml_sycl_pool_free(dst_dd[id], dst_as[id]);
|
|
}
|
|
if (src1_asq[id] > 0) {
|
|
ggml_sycl_pool_free(src1_ddq[id], src1_asq[id]);
|
|
}
|
|
if (src1_asf[id] > 0) {
|
|
ggml_sycl_pool_free(src1_ddf[id], src1_asf[id]);
|
|
}
|
|
if (src0_as[id] > 0) {
|
|
ggml_sycl_pool_free(src0_dd[id], src0_as[id]);
|
|
}
|
|
}
|
|
|
|
// main device waits for all other devices to be finished
|
|
if (split && g_device_count > 1) {
|
|
int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
|
|
is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
|
|
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
if (row_low[id] == row_high[id]) {
|
|
continue;
|
|
}
|
|
for (int64_t is = 0; is < is_max; ++is) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier(
|
|
{*src0_extra->events[id][is]})));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
dpct::get_current_device().queues_wait_and_throw()));
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_repeat);
|
|
}
|
|
|
|
static void ggml_sycl_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_get_rows);
|
|
}
|
|
|
|
static void ggml_sycl_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_add);
|
|
// log_tensor_with_cnt("log_ggml_sycl_add_src0", (struct ggml_tensor *) src0, 6);
|
|
// log_tensor_with_cnt("log_ggml_sycl_add_src1", (struct ggml_tensor *)src1, 6);
|
|
// log_tensor_with_cnt("log_ggml_sycl_add_dst", dst, 6);
|
|
}
|
|
|
|
static void ggml_sycl_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_acc);
|
|
}
|
|
|
|
static void ggml_sycl_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_mul);
|
|
// log_tensor_with_cnt("log_ggml_sycl_mul_src0", (struct ggml_tensor *)src0, 6);
|
|
// log_tensor_with_cnt("log_ggml_sycl_mul_src1", (struct ggml_tensor *)src1, 6);
|
|
// log_tensor_with_cnt("log_ggml_sycl_mul_dst", dst, 6);
|
|
|
|
}
|
|
|
|
static void ggml_sycl_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_div);
|
|
}
|
|
|
|
static void ggml_sycl_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu);
|
|
}
|
|
|
|
static void ggml_sycl_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_silu);
|
|
}
|
|
|
|
static void ggml_sycl_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu_quick);
|
|
}
|
|
|
|
static void ggml_sycl_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_tanh);
|
|
}
|
|
|
|
static void ggml_sycl_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_relu);
|
|
}
|
|
|
|
static void ggml_sycl_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_leaky_relu);
|
|
}
|
|
|
|
static void ggml_sycl_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sqr);
|
|
}
|
|
|
|
static void ggml_sycl_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_norm);
|
|
}
|
|
|
|
static void ggml_sycl_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_group_norm);
|
|
}
|
|
|
|
static void ggml_sycl_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_concat);
|
|
}
|
|
|
|
static void ggml_sycl_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_upscale);
|
|
}
|
|
|
|
static void ggml_sycl_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pad);
|
|
}
|
|
|
|
|
|
static void ggml_sycl_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_SYCL_DEBUG("call %s\n", __func__);
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rms_norm);
|
|
// log_tensor_with_cnt("log_ggml_sycl_rms_norm_src0", (struct ggml_tensor *)src0, 6);
|
|
// log_tensor_with_cnt("log_ggml_sycl_rms_norm_src1", (struct ggml_tensor *)src1, 6);
|
|
// log_tensor_with_cnt("log_ggml_sycl_rms_norm_dst", dst, 6);
|
|
}
|
|
|
|
bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
if (!g_sycl_loaded) return false;
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
// TODO: find the optimal values for these
|
|
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
dst->type == GGML_TYPE_F32 &&
|
|
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
|
|
}
|
|
|
|
static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0,
|
|
const ggml_tensor *src1,
|
|
ggml_tensor *dst) try {
|
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
void * src0_ddq = src0_extra->data_device[g_main_device_index];
|
|
|
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
|
|
|
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
|
|
|
|
ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0,
|
|
const ggml_tensor *src1,
|
|
ggml_tensor *dst) try {
|
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
void * src0_ddq = src0_extra->data_device[g_main_device_index];
|
|
|
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
|
|
|
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
|
|
|
|
const int64_t row_stride_x = nb01 / sizeof(sycl::half);
|
|
const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
|
|
|
|
ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
|
|
const sycl::half *src1_as_f16, char *dst,
|
|
const void **ptrs_src, void **ptrs_dst,
|
|
int64_t ne12, int64_t ne13, int64_t ne23,
|
|
size_t nb02, size_t nb03, size_t nb12,
|
|
size_t nb13, size_t nbd2, size_t nbd3,
|
|
int64_t r2, int64_t r3,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
|
|
item_ct1.get_local_id(2);
|
|
int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
|
|
item_ct1.get_local_id(1);
|
|
|
|
if (i13 >= ne13 || i12 >= ne12) {
|
|
return;
|
|
}
|
|
|
|
int64_t i03 = i13 / r3;
|
|
int64_t i02 = i12 / r2;
|
|
|
|
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
|
|
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
|
|
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
|
|
}
|
|
|
|
static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
|
const ggml_tensor *src1,
|
|
ggml_tensor *dst) try {
|
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
|
|
|
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
const int64_t ne_dst = ggml_nelements(dst);
|
|
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(g_sycl_handles[g_main_device_index] = main_stream));
|
|
|
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
void * src0_ddq = src0_extra->data_device[g_main_device_index];
|
|
sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
|
|
|
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
|
|
|
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
|
|
|
|
// convert src1 to fp16
|
|
sycl_pool_alloc<sycl::half> src1_f16_alloc;
|
|
if (src1->type != GGML_TYPE_F16) {
|
|
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
|
|
const int64_t ne_src1 = ggml_nelements(src1);
|
|
src1_f16_alloc.alloc(ne_src1);
|
|
GGML_ASSERT(to_fp16_sycl != nullptr);
|
|
to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
|
|
}
|
|
sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
|
|
: src1_f16_alloc.get();
|
|
|
|
sycl_pool_alloc<sycl::half> dst_f16;
|
|
char * dst_t;
|
|
|
|
dpct::library_data_t cu_compute_type = dpct::library_data_t::real_half;
|
|
dpct::library_data_t cu_data_type = dpct::library_data_t::real_half;
|
|
|
|
// dst strides
|
|
size_t nbd2 = dst->nb[2];
|
|
size_t nbd3 = dst->nb[3];
|
|
|
|
const sycl::half alpha_f16 = 1.0f;
|
|
const sycl::half beta_f16 = 0.0f;
|
|
|
|
const float alpha_f32 = 1.0f;
|
|
const float beta_f32 = 0.0f;
|
|
|
|
const void * alpha = &alpha_f16;
|
|
const void * beta = &beta_f16;
|
|
|
|
// TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway
|
|
// once oneMKL open source supports half, half, float, float: datatypes
|
|
dst_t = (char *) dst_f16.alloc(ne_dst);
|
|
|
|
nbd2 /= sizeof(float) / sizeof(sycl::half);
|
|
nbd3 /= sizeof(float) / sizeof(sycl::half);
|
|
|
|
GGML_ASSERT(ne12 % ne02 == 0);
|
|
GGML_ASSERT(ne13 % ne03 == 0);
|
|
|
|
// broadcast factors
|
|
const int64_t r2 = ne12/ne02;
|
|
const int64_t r3 = ne13/ne03;
|
|
|
|
#if 0
|
|
// use syclGemmEx
|
|
{
|
|
for (int i13 = 0; i13 < ne13; ++i13) {
|
|
for (int i12 = 0; i12 < ne12; ++i12) {
|
|
int i03 = i13 / r3;
|
|
int i02 = i12 / r2;
|
|
|
|
SYCL_CHECK(
|
|
syclGemmEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N,
|
|
ne01, ne11, ne10,
|
|
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , SYCL_R_16F, nb01/sizeof(half),
|
|
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F, nb11/sizeof(float),
|
|
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
|
|
cu_compute_type,
|
|
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
|
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
|
// use syclGemmStridedBatchedEx
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
|
*g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans,
|
|
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
|
|
(const char *)src0_as_f16, dpct::library_data_t::real_half,
|
|
nb01 / nb00, nb02 / nb00,
|
|
(const char *)src1_f16, dpct::library_data_t::real_half,
|
|
nb11 / nb10, nb12 / nb10, beta,
|
|
(char *)dst_t, cu_data_type, ne01, nb2 / nb0,
|
|
ne12 * ne13, cu_compute_type)));
|
|
} else {
|
|
// use syclGemmBatchedEx
|
|
const int ne23 = ne12*ne13;
|
|
|
|
sycl_pool_alloc<const void *> ptrs_src(2*ne23);
|
|
sycl_pool_alloc< void *> ptrs_dst(1*ne23);
|
|
|
|
sycl::range<3> block_dims(1, ne12, ne13);
|
|
/*
|
|
DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
|
|
the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if needed.
|
|
*/
|
|
{
|
|
dpct::has_capability_or_fail(main_stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
main_stream->submit([&](sycl::handler &cgh) {
|
|
const void **ptrs_src_get = ptrs_src.get();
|
|
void **ptrs_dst_get = ptrs_dst.get();
|
|
size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
|
|
size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
|
|
cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_compute_batched_ptrs(
|
|
src0_as_f16, src1_f16,
|
|
dst_t, ptrs_src_get,
|
|
ptrs_dst_get, ne12, ne13, ne23,
|
|
nb02, nb03, nb12_scaled, nb13_scaled,
|
|
nbd2, nbd3, r2, r3, item_ct1);
|
|
});
|
|
});
|
|
}
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
|
*g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans,
|
|
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
|
|
(const void **)(ptrs_src.get() + 0 * ne23),
|
|
dpct::library_data_t::real_half, nb01 / nb00,
|
|
(const void **)(ptrs_src.get() + 1 * ne23),
|
|
dpct::library_data_t::real_half, nb11 / nb10, beta,
|
|
(void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
|
|
cu_compute_type)));
|
|
}
|
|
#endif
|
|
|
|
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
|
to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream);
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const bool all_on_device =
|
|
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
|
|
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
|
|
( dst->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
|
|
|
int64_t min_compute_capability = INT_MAX;
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
if (min_compute_capability > g_device_caps[id].cc && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
|
|
min_compute_capability = g_device_caps[id].cc;
|
|
}
|
|
}
|
|
|
|
#ifdef SYCL_USE_XMX
|
|
const bool use_xmx = true;
|
|
#else
|
|
const bool use_xmx = false;
|
|
#endif
|
|
|
|
// debug helpers
|
|
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
|
|
//printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
|
|
//printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
|
|
//printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
|
|
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
|
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
|
|
|
if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
|
// KQ single-batch
|
|
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n");
|
|
ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
|
|
} else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
|
// KQV single-batch
|
|
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n");
|
|
ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
|
|
} else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
|
|
// KQ + KQV multi-batch
|
|
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n");
|
|
ggml_sycl_mul_mat_batched_sycl(src0, src1, dst);
|
|
} else if (src0->type == GGML_TYPE_F32) {
|
|
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n");
|
|
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
|
|
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
|
|
// GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n");
|
|
if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) {
|
|
#ifdef GGML_SYCL_FORCE_DMMV
|
|
const bool use_mul_mat_vec_q = false;
|
|
#else
|
|
const bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1;
|
|
#endif // GGML_SYCL_FORCE_DMMV
|
|
|
|
if (use_mul_mat_vec_q) {
|
|
// NOTE: this kernel does not support ggml_nrows(src1) > 1
|
|
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n");
|
|
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
|
|
} else {
|
|
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n");
|
|
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
|
|
}
|
|
} else {
|
|
bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
|
|
|
|
if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) {
|
|
use_mul_mat_q = false;
|
|
}
|
|
|
|
if (use_mul_mat_q) {
|
|
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n");
|
|
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
|
|
} else {
|
|
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n");
|
|
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
template<typename ... Srcs>
|
|
static __global__ void k_compute_batched_ptrs_id(
|
|
const void ** ptrs_src, void ** ptrs_dst,
|
|
int ne12, int ne13,
|
|
int ne23,
|
|
int nb02, int nb03,
|
|
int nb12, int nb13,
|
|
int nb2, int nb3,
|
|
int r2, int r3,
|
|
ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
|
|
const half * src1_f16, half * dst_f16,
|
|
const int32_t * ids, const int id,
|
|
Srcs... src0s) {
|
|
|
|
int i = ids[id];
|
|
|
|
half * src0_f16;
|
|
const void * srcs_ar[] = { (const half *) src0s... };
|
|
if (src0_type == GGML_TYPE_F16) {
|
|
src0_f16 = (half *) srcs_ar[i];
|
|
} else {
|
|
src0_f16 = src0_as_f16;
|
|
if (threadIdx.x == 0 && threadIdx.y == 0) {
|
|
const to_fp16_sycl_t to_fp16 = ggml_get_to_fp16_sycl(src0_type);
|
|
to_fp16(srcs_ar[i], src0_f16, src0_ne, syclStreamFireAndForget);
|
|
}
|
|
}
|
|
|
|
int i13 = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int i12 = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if (i13 >= ne13 || i12 >= ne12) {
|
|
return;
|
|
}
|
|
|
|
int i03 = i13 / r3;
|
|
int i02 = i12 / r2;
|
|
|
|
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
|
|
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
|
|
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
|
|
}
|
|
|
|
static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
|
|
const struct ggml_tensor * ids = dst->src[0];
|
|
const struct ggml_tensor * src1 = dst->src[1];
|
|
const struct ggml_tensor * src00 = dst->src[2];
|
|
|
|
const int id = dst->op_params[0];
|
|
|
|
GGML_ASSERT(!ggml_is_transposed(src00));
|
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
|
|
|
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
|
|
|
|
//const int64_t nb01 = src00->nb[1];
|
|
GGML_TENSOR_LOCALS(int64_t, nb0, src00, nb);
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
|
|
//const int64_t nb11 = src1->nb[1];
|
|
|
|
const int64_t ne1 = ggml_nelements(src1);
|
|
const int64_t ne = ggml_nelements(dst);
|
|
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
syclStream_t main_stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
SYCL_CHECK(syclSetStream(g_sycl_handles[g_main_device_index], main_stream));
|
|
|
|
//ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
//void * src0_ddq = src0_extra->data_device[g_main_device_index];
|
|
//half * src0_as_f16 = (half *) src0_ddq;
|
|
|
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
|
|
|
|
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
|
float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
|
|
|
|
// convert src1 to fp16
|
|
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
|
|
GGML_ASSERT(to_fp16_sycl != nullptr);
|
|
|
|
size_t src1_as = 0;
|
|
half * src1_as_f16 = (half *) ggml_sycl_pool_malloc(ne1 * sizeof(half), &src1_as);
|
|
to_fp16_sycl(src1_ddf, src1_as_f16, ne1, main_stream);
|
|
|
|
size_t dst_as = 0;
|
|
half * dst_f16 = (half *) ggml_sycl_pool_malloc(ne * sizeof(half), &dst_as);
|
|
|
|
GGML_ASSERT(ne12 % ne02 == 0);
|
|
GGML_ASSERT(ne13 % ne03 == 0);
|
|
|
|
// broadcast factors
|
|
const int64_t r2 = ne12/ne02;
|
|
const int64_t r3 = ne13/ne03;
|
|
|
|
const half alpha_f16 = 1.0f;
|
|
const half beta_f16 = 0.0f;
|
|
|
|
// use syclGemmBatchedEx
|
|
const int ne23 = ne12*ne13;
|
|
|
|
const void ** ptrs_src = nullptr;
|
|
void ** ptrs_dst = nullptr;
|
|
|
|
size_t ptrs_src_s = 0;
|
|
size_t ptrs_dst_s = 0;
|
|
|
|
ptrs_src = (const void **) ggml_sycl_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
|
|
ptrs_dst = ( void **) ggml_sycl_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
|
|
|
|
int64_t src0_ne = ggml_nelements(src00);
|
|
half * src0_as_f16 = nullptr;
|
|
size_t src0_as = 0;
|
|
if (src00->type != GGML_TYPE_F16) {
|
|
src0_as_f16 = (half *) ggml_sycl_pool_malloc(src0_ne * sizeof(half), &src0_as);
|
|
}
|
|
|
|
static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
|
|
dim3 block_dims(ne13, ne12);
|
|
k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
|
|
ptrs_src, ptrs_dst,
|
|
ne12, ne13,
|
|
ne23,
|
|
ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
|
|
nb12, nb13,
|
|
dst->nb[2], dst->nb[3],
|
|
r2, r3,
|
|
src00->type, src0_as_f16, src0_ne,
|
|
src1_as_f16, dst_f16,
|
|
(const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index], id,
|
|
dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device_index] : nullptr,
|
|
dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device_index] : nullptr,
|
|
dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device_index] : nullptr,
|
|
dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device_index] : nullptr
|
|
);
|
|
SYCL_CHECK(syclGetLastError());
|
|
|
|
SYCL_CHECK(
|
|
syclGemmBatchedEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N,
|
|
ne01, ne11, ne10,
|
|
&alpha_f16, (const void **) (ptrs_src + 0*ne23), SYCL_R_16F, ne00,
|
|
(const void **) (ptrs_src + 1*ne23), SYCL_R_16F, ne10,
|
|
&beta_f16, ( void **) (ptrs_dst + 0*ne23), SYCL_R_16F, ne01,
|
|
ne23,
|
|
CUBLAS_COMPUTE_16F,
|
|
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
|
|
if (src0_as != 0) {
|
|
ggml_sycl_pool_free(src0_as_f16, src0_as);
|
|
}
|
|
if (ptrs_src_s != 0) {
|
|
ggml_sycl_pool_free(ptrs_src, ptrs_src_s);
|
|
}
|
|
if (ptrs_dst_s != 0) {
|
|
ggml_sycl_pool_free(ptrs_dst, ptrs_dst_s);
|
|
}
|
|
|
|
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
|
to_fp32_sycl(dst_f16, dst_ddf, ne, main_stream);
|
|
|
|
ggml_sycl_pool_free(src1_as_f16, src1_as);
|
|
ggml_sycl_pool_free(dst_f16, dst_as);
|
|
}
|
|
#endif
|
|
|
|
static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
|
const ggml_tensor *src1,
|
|
ggml_tensor *dst) try {
|
|
#if 0
|
|
ggml_sycl_mul_mat_id_sycl(dst);
|
|
// TODO: mmq/mmv support
|
|
#endif
|
|
|
|
const int64_t nb11 = src1->nb[1];
|
|
const int64_t nb1 = dst->nb[1];
|
|
|
|
const struct ggml_tensor * ids = src0;
|
|
const int32_t id = ((int32_t *) dst->op_params)[0];
|
|
const int32_t n_as = ((int32_t *) dst->op_params)[1];
|
|
|
|
std::vector<char> ids_host(ggml_nbytes(ids));
|
|
|
|
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
|
|
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index];
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
|
|
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
|
|
} else {
|
|
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
|
|
}
|
|
|
|
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
|
|
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
|
|
|
|
ggml_tensor_extra_gpu src1_row_extra;
|
|
ggml_tensor_extra_gpu dst_row_extra;
|
|
|
|
ggml_tensor src1_row = *src1;
|
|
ggml_tensor dst_row = *dst;
|
|
|
|
src1_row.backend = GGML_BACKEND_TYPE_GPU;
|
|
dst_row.backend = GGML_BACKEND_TYPE_GPU;
|
|
|
|
src1_row.extra = &src1_row_extra;
|
|
dst_row.extra = &dst_row_extra;
|
|
|
|
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
|
(char *) src1->data : (char *) src1_extra->data_device[g_main_device_index];
|
|
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
|
(char *) dst->data : (char *) dst_extra->data_device[g_main_device_index];
|
|
|
|
if (src1->ne[1] == 1) {
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
|
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
|
//int32_t row_id;
|
|
//SYCL_CHECK(syclMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), syclMemcpyDeviceToHost, g_syclStreams[g_main_device][0]));
|
|
//SYCL_CHECK(syclStreamSynchronize(g_syclStreams[g_main_device][0]));
|
|
|
|
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
|
|
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
|
|
|
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
|
|
|
src1_row_extra.data_device[g_main_device_index] = src1_original + i01*src1->nb[1];
|
|
src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
|
|
|
|
dst_row_extra.data_device[g_main_device_index] = dst_original + i01*dst->nb[1];
|
|
dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
|
|
|
|
ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
|
|
}
|
|
} else {
|
|
sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
|
|
sycl_pool_alloc<char> dst_contiguous(sizeof(float)*ggml_nelements(dst));
|
|
|
|
src1_row_extra.data_device[g_main_device_index] = src1_contiguous.get();
|
|
dst_row_extra.data_device[g_main_device_index] = dst_contiguous.get();
|
|
|
|
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
|
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
|
|
|
int64_t num_src1_rows = 0;
|
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
|
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
|
|
|
if (row_id_i != row_id) {
|
|
continue;
|
|
}
|
|
|
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
stream->memcpy(src1_contiguous.get() + num_src1_rows * nb11,
|
|
src1_original + i01 * nb11, nb11)));
|
|
num_src1_rows++;
|
|
}
|
|
|
|
if (num_src1_rows == 0) {
|
|
continue;
|
|
}
|
|
|
|
src1_row.ne[1] = num_src1_rows;
|
|
dst_row.ne[1] = num_src1_rows;
|
|
|
|
src1_row.nb[1] = nb11;
|
|
src1_row.nb[2] = num_src1_rows*nb11;
|
|
src1_row.nb[3] = num_src1_rows*nb11;
|
|
|
|
dst_row.nb[1] = nb1;
|
|
dst_row.nb[2] = num_src1_rows*nb1;
|
|
dst_row.nb[3] = num_src1_rows*nb1;
|
|
|
|
ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
|
|
|
|
num_src1_rows = 0;
|
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
|
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
|
|
|
if (row_id_i != row_id) {
|
|
continue;
|
|
}
|
|
|
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
|
|
dst_original + i01 * nb1,
|
|
dst_contiguous.get() + num_src1_rows * nb1, nb1)));
|
|
num_src1_rows++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_scale);
|
|
}
|
|
|
|
static void ggml_sycl_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_clamp);
|
|
}
|
|
|
|
static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
|
|
ggml_tensor *dst) try {
|
|
const int64_t ne = ggml_nelements(src0);
|
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
|
|
|
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
|
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
|
const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
|
|
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
|
char * src1_ddc = (char *) src1_extra->data_device[g_main_device_index];
|
|
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
|
ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
|
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
|
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
|
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
|
ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
|
|
ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
|
ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
|
} else {
|
|
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
|
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
(void) dst;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_sycl_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
// TODO: why do we pass dst as src1 here?
|
|
ggml_sycl_cpy(src0, dst, nullptr);
|
|
(void) src1;
|
|
}
|
|
|
|
static void ggml_sycl_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_diag_mask_inf);
|
|
}
|
|
|
|
static void ggml_sycl_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_soft_max);
|
|
}
|
|
|
|
static void ggml_sycl_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rope);
|
|
}
|
|
|
|
static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi);
|
|
}
|
|
|
|
static void ggml_sycl_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_im2col);
|
|
}
|
|
|
|
static void ggml_sycl_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sum_rows);
|
|
}
|
|
|
|
static void ggml_sycl_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_argsort);
|
|
}
|
|
|
|
static void ggml_sycl_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
(void) src0;
|
|
(void) src1;
|
|
(void) dst;
|
|
}
|
|
|
|
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
|
|
}
|
|
|
|
void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
|
|
const int64_t nrows = ggml_nrows(tensor);
|
|
|
|
const int64_t ne0 = tensor->ne[0];
|
|
|
|
const size_t nb1 = tensor->nb[1];
|
|
|
|
ggml_backend_type backend = tensor->backend;
|
|
ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
if (backend == GGML_BACKEND_TYPE_GPU && id != g_main_device_index) {
|
|
continue;
|
|
}
|
|
ggml_sycl_set_device(get_device_id_by_index(id));
|
|
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
|
|
|
int64_t row_low, row_high;
|
|
if (backend == GGML_BACKEND_TYPE_GPU) {
|
|
row_low = 0;
|
|
row_high = nrows;
|
|
} else if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
|
const int64_t rounding = get_row_rounding(tensor->type);
|
|
|
|
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
|
|
row_low -= row_low % rounding;
|
|
|
|
if (id == g_device_count - 1) {
|
|
row_high = nrows;
|
|
} else {
|
|
row_high = nrows*g_tensor_split[id + 1];
|
|
row_high -= row_high % rounding;
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
if (row_low == row_high) {
|
|
continue;
|
|
}
|
|
|
|
int64_t nrows_split = row_high - row_low;
|
|
|
|
const size_t offset_split = row_low*nb1;
|
|
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
|
const size_t original_size = size;
|
|
|
|
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
|
}
|
|
|
|
char * buf;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
|
|
size, *stream)));
|
|
char * buf_host = (char *)data + offset_split;
|
|
|
|
// set padding to 0 to avoid possible NaN values
|
|
if (size > original_size) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
(*stream)
|
|
.memset(buf + original_size, 0, size - original_size)
|
|
.wait()));
|
|
}
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR((*stream)
|
|
.memcpy(buf, buf_host, original_size)
|
|
.wait()));
|
|
|
|
extra->data_device[id] = buf;
|
|
|
|
if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
|
for (int64_t is = 0; is < MAX_STREAMS; ++is) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] =
|
|
new sycl::event()));
|
|
}
|
|
}
|
|
}
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
|
|
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_TYPE_GPU && tensor->backend != GGML_BACKEND_TYPE_GPU_SPLIT) ) {
|
|
return;
|
|
}
|
|
|
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
|
|
|
for (int64_t id = 0; id < g_device_count; ++id) {
|
|
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
|
if (extra->data_device[id] != nullptr) {
|
|
SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
|
|
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(extra->data_device[id], *stream)));
|
|
}
|
|
|
|
for (int64_t is = 0; is < MAX_STREAMS; ++is) {
|
|
if (extra->events[id][is] != nullptr) {
|
|
SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
dpct::destroy_event(extra->events[id][is])));
|
|
}
|
|
}
|
|
}
|
|
|
|
delete extra;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
|
|
static size_t g_temp_tensor_extra_index = 0;
|
|
|
|
static ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
|
|
if (g_temp_tensor_extras == nullptr) {
|
|
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
|
|
}
|
|
|
|
size_t alloc_index = g_temp_tensor_extra_index;
|
|
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
|
|
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
return extra;
|
|
}
|
|
|
|
static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
|
|
bool scratch, bool force_inplace,
|
|
bool no_alloc) try {
|
|
if (scratch && g_scratch_size == 0) {
|
|
return;
|
|
}
|
|
|
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
|
|
|
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU) {
|
|
const ggml_op src0_op = tensor->src[0]->op;
|
|
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
|
|
ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
|
|
}
|
|
}
|
|
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU) {
|
|
ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
|
|
}
|
|
|
|
if (scratch && no_alloc) {
|
|
return;
|
|
}
|
|
|
|
ggml_tensor_extra_gpu * extra;
|
|
|
|
const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
|
|
tensor->op == GGML_OP_VIEW ||
|
|
force_inplace;
|
|
const size_t size = ggml_nbytes(tensor);
|
|
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
|
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
|
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
|
size_t offset = 0;
|
|
if (tensor->op == GGML_OP_VIEW) {
|
|
memcpy(&offset, tensor->op_params, sizeof(size_t));
|
|
}
|
|
extra = ggml_sycl_alloc_temp_tensor_extra();
|
|
extra->data_device[g_main_device_index] = src0_ddc + offset;
|
|
} else if (tensor->op == GGML_OP_CPY) {
|
|
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
|
|
void * src1_ddv = src1_extra->data_device[g_main_device_index];
|
|
extra = ggml_sycl_alloc_temp_tensor_extra();
|
|
extra->data_device[g_main_device_index] = src1_ddv;
|
|
} else if (scratch) {
|
|
GGML_ASSERT(size <= g_scratch_size);
|
|
if (g_scratch_offset + size > g_scratch_size) {
|
|
g_scratch_offset = 0;
|
|
}
|
|
|
|
char * data = (char *) g_scratch_buffer;
|
|
if (data == nullptr) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
data = (char *)sycl::malloc_device(
|
|
g_scratch_size, *stream)));
|
|
g_scratch_buffer = data;
|
|
}
|
|
extra = ggml_sycl_alloc_temp_tensor_extra();
|
|
extra->data_device[g_main_device_index] = data + g_scratch_offset;
|
|
|
|
g_scratch_offset += size;
|
|
|
|
GGML_ASSERT(g_scratch_offset <= g_scratch_size);
|
|
} else { // allocate new buffers outside of scratch
|
|
void * data;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(data = (void *)sycl::malloc_device(
|
|
size, *stream)));
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
(*stream).memset(data, 0, size).wait()));
|
|
extra = new ggml_tensor_extra_gpu;
|
|
memset(extra, 0, sizeof(*extra));
|
|
extra->data_device[g_main_device_index] = data;
|
|
}
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
void ggml_sycl_assign_scratch_offset(struct ggml_tensor *tensor,
|
|
size_t offset) try {
|
|
if (g_scratch_size == 0) {
|
|
return;
|
|
}
|
|
if (g_scratch_buffer == nullptr) {
|
|
ggml_sycl_set_device(g_main_device);
|
|
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(g_scratch_buffer = (void *)sycl::malloc_device(
|
|
g_scratch_size, *stream)));
|
|
}
|
|
|
|
ggml_tensor_extra_gpu * extra = ggml_sycl_alloc_temp_tensor_extra();
|
|
|
|
const bool inplace = tensor->view_src != nullptr;
|
|
|
|
if (inplace && (tensor->view_src->backend == GGML_BACKEND_TYPE_GPU || tensor->view_src->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
|
|
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
|
|
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
|
size_t view_offset = 0;
|
|
if (tensor->op == GGML_OP_VIEW) {
|
|
memcpy(&view_offset, tensor->op_params, sizeof(size_t));
|
|
}
|
|
extra->data_device[g_main_device_index] = src0_ddc + view_offset;
|
|
} else {
|
|
extra->data_device[g_main_device_index] = (char *) g_scratch_buffer + offset;
|
|
}
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
|
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
GGML_ASSERT(ggml_is_contiguous(tensor));
|
|
|
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
|
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
|
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
|
SYCL_CHECK(CHECK_TRY_ERROR((*stream)
|
|
.memcpy(extra->data_device[g_main_device_index],
|
|
tensor->data, ggml_nbytes(tensor))
|
|
.wait()));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
void ggml_sycl_assign_buffers(struct ggml_tensor * tensor) {
|
|
ggml_sycl_assign_buffers_impl(tensor, true, false, false);
|
|
}
|
|
|
|
void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
|
|
ggml_sycl_assign_buffers_impl(tensor, true, false, true);
|
|
}
|
|
|
|
void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
|
|
ggml_sycl_assign_buffers_impl(tensor, false, false, false);
|
|
}
|
|
|
|
void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
|
|
ggml_sycl_assign_buffers_impl(tensor, false, true, false);
|
|
}
|
|
|
|
void ggml_sycl_set_main_device(const int main_device) try {
|
|
|
|
if (main_device >= g_all_sycl_device_count) {
|
|
fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
|
|
main_device, g_all_sycl_device_count, g_main_device);
|
|
return;
|
|
}
|
|
|
|
if (g_main_device != main_device && g_device_count >= 1) {
|
|
g_main_device = main_device;
|
|
g_main_device_index = get_device_index_by_id(g_main_device);
|
|
dpct::device_info prop;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
|
prop, dpct::dev_mgr::instance().get_device(g_main_device))));
|
|
fprintf(stderr, "Using device %d (%s) as main device\n",
|
|
g_main_device, prop.get_name());
|
|
}
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
void ggml_sycl_set_scratch_size(const size_t scratch_size) {
|
|
// this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
|
|
// it still won't always work as expected, but it's better than nothing
|
|
if (scratch_size > g_scratch_size) {
|
|
ggml_sycl_free_scratch();
|
|
}
|
|
g_scratch_size = std::max(g_scratch_size, scratch_size);
|
|
}
|
|
|
|
void ggml_sycl_free_scratch() try {
|
|
if (g_scratch_buffer == nullptr) {
|
|
return;
|
|
}
|
|
ggml_sycl_set_device(g_main_device);
|
|
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
sycl::free(g_scratch_buffer, *stream)));
|
|
g_scratch_buffer = nullptr;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
|
if (!g_sycl_loaded) return false;
|
|
|
|
ggml_sycl_func_t func;
|
|
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
|
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
|
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
|
return false;
|
|
}
|
|
|
|
if (tensor->op == GGML_OP_MUL_MAT) {
|
|
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
|
|
#ifndef NDEBUG
|
|
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
switch (tensor->op) {
|
|
case GGML_OP_REPEAT:
|
|
func = ggml_sycl_repeat;
|
|
break;
|
|
case GGML_OP_GET_ROWS:
|
|
func = ggml_sycl_get_rows;
|
|
break;
|
|
case GGML_OP_DUP:
|
|
func = ggml_sycl_dup;
|
|
break;
|
|
case GGML_OP_ADD:
|
|
func = ggml_sycl_add;
|
|
break;
|
|
case GGML_OP_ACC:
|
|
func = ggml_sycl_acc;
|
|
break;
|
|
case GGML_OP_MUL:
|
|
func = ggml_sycl_mul;
|
|
break;
|
|
case GGML_OP_DIV:
|
|
func = ggml_sycl_div;
|
|
break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(tensor)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
func = ggml_sycl_gelu;
|
|
break;
|
|
case GGML_UNARY_OP_SILU:
|
|
func = ggml_sycl_silu;
|
|
break;
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
func = ggml_sycl_gelu_quick;
|
|
break;
|
|
case GGML_UNARY_OP_TANH:
|
|
func = ggml_sycl_tanh;
|
|
break;
|
|
case GGML_UNARY_OP_RELU:
|
|
func = ggml_sycl_relu;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_NORM:
|
|
func = ggml_sycl_norm;
|
|
break;
|
|
case GGML_OP_GROUP_NORM:
|
|
func = ggml_sycl_group_norm;
|
|
break;
|
|
case GGML_OP_CONCAT:
|
|
func = ggml_sycl_concat;
|
|
break;
|
|
case GGML_OP_UPSCALE:
|
|
func = ggml_sycl_upscale;
|
|
break;
|
|
case GGML_OP_PAD:
|
|
func = ggml_sycl_pad;
|
|
break;
|
|
case GGML_OP_LEAKY_RELU:
|
|
func = ggml_sycl_leaky_relu;
|
|
break;
|
|
case GGML_OP_RMS_NORM:
|
|
func = ggml_sycl_rms_norm;
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
|
|
return false;
|
|
}
|
|
func = ggml_sycl_mul_mat;
|
|
break;
|
|
case GGML_OP_MUL_MAT_ID:
|
|
if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
|
|
return false;
|
|
}
|
|
func = ggml_sycl_mul_mat_id;
|
|
break;
|
|
case GGML_OP_SCALE:
|
|
func = ggml_sycl_scale;
|
|
break;
|
|
case GGML_OP_SQR:
|
|
func = ggml_sycl_sqr;
|
|
break;
|
|
case GGML_OP_CLAMP:
|
|
func = ggml_sycl_clamp;
|
|
break;
|
|
case GGML_OP_CPY:
|
|
func = ggml_sycl_cpy;
|
|
break;
|
|
case GGML_OP_CONT:
|
|
func = ggml_sycl_dup;
|
|
break;
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
func = ggml_sycl_nop;
|
|
break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
func = ggml_sycl_diag_mask_inf;
|
|
break;
|
|
case GGML_OP_SOFT_MAX:
|
|
func = ggml_sycl_soft_max;
|
|
break;
|
|
case GGML_OP_ROPE:
|
|
func = ggml_sycl_rope;
|
|
break;
|
|
case GGML_OP_ALIBI:
|
|
func = ggml_sycl_alibi;
|
|
break;
|
|
case GGML_OP_IM2COL:
|
|
func = ggml_sycl_im2col;
|
|
break;
|
|
case GGML_OP_SUM_ROWS:
|
|
func = ggml_sycl_sum_rows;
|
|
break;
|
|
case GGML_OP_ARGSORT:
|
|
func = ggml_sycl_argsort;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
|
ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
|
|
}
|
|
|
|
if (params->ith != 0) {
|
|
return true;
|
|
}
|
|
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
|
return true;
|
|
}
|
|
func(tensor->src[0], tensor->src[1], tensor);
|
|
return true;
|
|
}
|
|
|
|
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
|
|
int max_compute_units = -1;
|
|
for(int i=0;i<max_len;i++) id_list[i] = 0;
|
|
|
|
int device_count = dpct::dev_mgr::instance().device_count();
|
|
|
|
for(int id=0; id< device_count; id++){
|
|
sycl::device device = dpct::dev_mgr::instance().get_device(id);
|
|
if (!device.is_gpu()) continue;
|
|
dpct::device_info prop;
|
|
dpct::get_device_info(prop, device);
|
|
if(max_compute_units < prop.get_max_compute_units()) max_compute_units = prop.get_max_compute_units();
|
|
}
|
|
|
|
for(int id=0;id< device_count;id++){
|
|
sycl::device device = dpct::dev_mgr::instance().get_device(id);
|
|
if (!device.is_gpu()) continue;
|
|
dpct::device_info prop;
|
|
dpct::get_device_info(prop, device);
|
|
if(max_compute_units == prop.get_max_compute_units() && prop.get_major_version() == 1 ){
|
|
id_list[id] = 1;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
int ggml_sycl_get_device_count() try {
|
|
int device_count;
|
|
if (CHECK_TRY_ERROR(device_count =
|
|
dpct::dev_mgr::instance().device_count()) != 0) {
|
|
return 0;
|
|
}
|
|
return device_count;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
|
|
size_t description_size) try {
|
|
dpct::device_info prop;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
|
prop, dpct::dev_mgr::instance().get_device(device))));
|
|
snprintf(description, description_size, "%s", prop.get_name());
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// backend interface
|
|
|
|
#define UNUSED GGML_UNUSED
|
|
|
|
struct ggml_backend_sycl_context {
|
|
int device;
|
|
std::string name;
|
|
};
|
|
|
|
// sycl buffer
|
|
|
|
struct ggml_backend_sycl_buffer_context {
|
|
int device;
|
|
void * dev_ptr = nullptr;
|
|
ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
|
|
size_t temp_tensor_extra_index = 0;
|
|
std::string name;
|
|
|
|
ggml_backend_sycl_buffer_context(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr) {}
|
|
|
|
~ ggml_backend_sycl_buffer_context() {
|
|
delete[] temp_tensor_extras;
|
|
}
|
|
|
|
ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
|
|
if (temp_tensor_extras == nullptr) {
|
|
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
|
|
}
|
|
|
|
size_t alloc_index = temp_tensor_extra_index;
|
|
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
|
|
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
|
|
memset(extra, 0, sizeof(*extra));
|
|
|
|
return extra;
|
|
}
|
|
};
|
|
|
|
GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
|
|
return ctx->name.c_str();
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
|
|
return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
|
|
}
|
|
|
|
static void
|
|
ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
|
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
|
ggml_sycl_set_device(ctx->device);
|
|
int device_index = get_device_index_by_id(ctx->device);
|
|
const dpct::queue_ptr stream = g_syclStreams[device_index][0];
|
|
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(sycl::free(ctx->dev_ptr, *stream)));
|
|
delete ctx;
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
|
return ctx->dev_ptr;
|
|
}
|
|
|
|
static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
|
ggml_tensor *tensor) try {
|
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
|
|
|
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
|
assert(tensor->view_src->buffer->buft == buffer->buft);
|
|
tensor->backend = tensor->view_src->backend;
|
|
tensor->extra = tensor->view_src->extra;
|
|
return;
|
|
}
|
|
|
|
ggml_tensor_extra_gpu * extra = ctx->ggml_sycl_alloc_temp_tensor_extra();
|
|
|
|
extra->data_device[ctx->device] = tensor->data;
|
|
|
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
|
tensor->extra = extra;
|
|
|
|
if (ggml_is_quantized(tensor->type)) {
|
|
// initialize padding to 0 to avoid possible NaN values
|
|
int64_t row_low = 0;
|
|
int64_t row_high = ggml_nrows(tensor);
|
|
int64_t nrows_split = row_high - row_low;
|
|
|
|
size_t original_size = ggml_nbytes_split(tensor, nrows_split);
|
|
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
|
|
|
if (padded_size > original_size && tensor->view_src == nullptr) {
|
|
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[ctx->device][0]->memset(
|
|
(char *)tensor->data + original_size, 0,
|
|
padded_size - original_size)));
|
|
}
|
|
}
|
|
|
|
UNUSED(buffer);
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
|
ggml_tensor *tensor,
|
|
const void *data, size_t offset,
|
|
size_t size) try {
|
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
|
|
|
ggml_sycl_set_device(ctx->device);
|
|
int device_index = get_device_index_by_id(ctx->device);
|
|
const dpct::queue_ptr stream = g_syclStreams[device_index][0];
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
|
|
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR((*stream)
|
|
.memcpy((char *)tensor->data + offset, data, size)
|
|
.wait()));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
|
const ggml_tensor *tensor,
|
|
void *data, size_t offset,
|
|
size_t size) try {
|
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
|
|
|
ggml_sycl_set_device(ctx->device);
|
|
int device_index = get_device_index_by_id(ctx->device);
|
|
const dpct::queue_ptr stream = g_syclStreams[device_index][0];
|
|
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(
|
|
(*stream)
|
|
.memcpy(data, (const char *)tensor->data + offset, size)
|
|
.wait()));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
|
|
uint8_t value) try {
|
|
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
|
|
|
ggml_sycl_set_device(ctx->device);
|
|
int device_index = get_device_index_by_id(ctx->device);
|
|
const dpct::queue_ptr stream = g_syclStreams[device_index][0];
|
|
SYCL_CHECK(
|
|
CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR((*stream)
|
|
.memset(ctx->dev_ptr, value, buffer->size)
|
|
.wait()));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
|
|
/* .get_name = */ ggml_backend_sycl_buffer_get_name,
|
|
/* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_sycl_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
|
|
/* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
|
|
/* .cpy_tensor = */ NULL,
|
|
/* .clear = */ ggml_backend_sycl_buffer_clear,
|
|
/* .reset = */ NULL,
|
|
};
|
|
|
|
// sycl buffer type
|
|
struct ggml_backend_sycl_buffer_type_context {
|
|
int device;
|
|
std::string name;
|
|
};
|
|
|
|
GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
|
|
|
return ctx->name.c_str();
|
|
}
|
|
|
|
static ggml_backend_buffer_t
|
|
ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
|
|
size_t size) try {
|
|
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
|
int device = (int) buft_ctx->device;
|
|
|
|
ggml_sycl_set_device(device);
|
|
int device_index = get_device_index_by_id(device);
|
|
const dpct::queue_ptr stream = g_syclStreams[device_index][0];
|
|
size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
|
|
|
|
void * dev_ptr;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
|
|
size, *stream)));
|
|
|
|
ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(device, dev_ptr);
|
|
|
|
return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
return 128;
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
|
return dpct::get_current_device().get_max_mem_alloc_size();
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
|
int64_t row_low = 0;
|
|
int64_t row_high = ggml_nrows(tensor);
|
|
int64_t nrows_split = row_high - row_low;
|
|
|
|
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
|
|
|
int64_t ne0 = tensor->ne[0];
|
|
|
|
if (ggml_is_quantized(tensor->type)) {
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
|
}
|
|
}
|
|
|
|
return size;
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
static bool ggml_backend_sycl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
|
return ggml_backend_is_sycl(backend);
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_sycl_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
|
|
/* .supports_backend = */ ggml_backend_sycl_buffer_type_supports_backend,
|
|
/* .is_host = */ nullptr,
|
|
};
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
|
|
static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
|
|
|
|
static bool ggml_backend_sycl_buffer_type_initialized = false;
|
|
|
|
if (!ggml_backend_sycl_buffer_type_initialized) {
|
|
for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
|
|
ggml_backend_sycl_buffer_types[i] = {
|
|
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
|
|
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i)},
|
|
};
|
|
}
|
|
ggml_backend_sycl_buffer_type_initialized = true;
|
|
}
|
|
|
|
return &ggml_backend_sycl_buffer_types[device];
|
|
}
|
|
|
|
// host buffer type
|
|
|
|
GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
return GGML_SYCL_NAME "_Host";
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
|
|
return GGML_SYCL_NAME "_Host";
|
|
|
|
UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_sycl_host_free(buffer->context);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
void * ptr = ggml_sycl_host_malloc(size);
|
|
|
|
if (ptr == nullptr) {
|
|
// fallback to cpu buffer
|
|
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
|
}
|
|
|
|
// FIXME: this is a hack to avoid having to implement a new buffer type
|
|
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
|
buffer->buft = buft;
|
|
buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
|
|
|
|
return buffer;
|
|
}
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
|
|
static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_sycl_host_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
|
/* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
|
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
|
},
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return &ggml_backend_sycl_buffer_type_host;
|
|
}
|
|
|
|
// backend
|
|
|
|
static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
|
|
return GGML_SYCL_NAME;
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_sycl_free(ggml_backend_t backend) {
|
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
|
|
|
delete sycl_ctx;
|
|
delete backend;
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
|
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
|
|
|
return ggml_backend_sycl_buffer_type(sycl_ctx->device);
|
|
}
|
|
|
|
static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
|
|
ggml_tensor *tensor,
|
|
const void *data, size_t offset,
|
|
size_t size) try {
|
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
|
|
|
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
|
(char *)tensor->data + offset, data, size)));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
|
|
const ggml_tensor *tensor,
|
|
void *data, size_t offset,
|
|
size_t size) try {
|
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
|
|
|
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
|
data, (const char *)tensor->data + offset, size)));
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
|
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
|
|
|
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->wait()));
|
|
|
|
UNUSED(backend);
|
|
}
|
|
catch (sycl::exception const &exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
std::exit(1);
|
|
}
|
|
|
|
static ggml_backend_graph_plan_t ggml_backend_sycl_graph_plan_create(ggml_backend_t backend, const ggml_cgraph * cgraph) {
|
|
GGML_ASSERT(!"not implemented");
|
|
|
|
return nullptr;
|
|
|
|
UNUSED(backend);
|
|
UNUSED(cgraph);
|
|
}
|
|
|
|
static void ggml_backend_sycl_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
|
GGML_ASSERT(!"not implemented");
|
|
|
|
UNUSED(backend);
|
|
UNUSED(plan);
|
|
}
|
|
|
|
static void ggml_backend_sycl_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
|
GGML_ASSERT(!"not implemented");
|
|
|
|
UNUSED(backend);
|
|
UNUSED(plan);
|
|
}
|
|
|
|
static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
|
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
|
|
|
ggml_sycl_set_main_device(sycl_ctx->device);
|
|
|
|
ggml_compute_params params = {};
|
|
params.type = GGML_TASK_TYPE_COMPUTE;
|
|
params.ith = 0;
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
ggml_tensor * node = cgraph->nodes[i];
|
|
|
|
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
|
continue;
|
|
|
|
assert(node->backend == GGML_BACKEND_TYPE_GPU);
|
|
assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
|
assert(node->extra != nullptr);
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
if (node->src[j] != nullptr) {
|
|
assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU);
|
|
assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
|
assert(node->src[j]->extra != nullptr);
|
|
}
|
|
}
|
|
|
|
bool ok = ggml_sycl_compute_forward(¶ms, node);
|
|
if (!ok) {
|
|
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
|
}
|
|
GGML_ASSERT(ok);
|
|
|
|
#if 0
|
|
if (node->type == GGML_TYPE_F32) {
|
|
syclDeviceSynchronize();
|
|
std::vector<float> tmp(ggml_nelements(node), 0.0f);
|
|
syclMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), syclMemcpyDeviceToHost);
|
|
printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op),
|
|
ggml_type_name(node->src[0]->type),
|
|
node->src[1] ? ggml_type_name(node->src[1]->type) : "none",
|
|
node->src[0]->name,
|
|
node->src[1] ? node->src[1]->name : "none");
|
|
double sum = 0.0;
|
|
double sq_sum = 0.0;
|
|
for (int i = 0; i < ggml_nelements(node); i++) {
|
|
printf("%f ", tmp[i]);
|
|
sum += tmp[i];
|
|
sq_sum += tmp[i]*tmp[i];
|
|
}
|
|
printf("\n");
|
|
printf("sum: %f, ", sum);
|
|
printf("sq_sum: %f\n", sq_sum);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
UNUSED(backend);
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
|
switch (op->op) {
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(op)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_RELU:
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
case GGML_UNARY_OP_TANH:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
{
|
|
struct ggml_tensor * a;
|
|
struct ggml_tensor * b;
|
|
if (op->op == GGML_OP_MUL_MAT) {
|
|
a = op->src[0];
|
|
b = op->src[1];
|
|
} else {
|
|
a = op->src[2];
|
|
b = op->src[1];
|
|
}
|
|
if (a->ne[3] != b->ne[3]) {
|
|
return false;
|
|
}
|
|
|
|
if (a->type == GGML_TYPE_IQ1_S) {
|
|
return false;
|
|
}
|
|
if (a->type == GGML_TYPE_IQ3_XXS) {
|
|
return false;
|
|
}
|
|
if (a->type == GGML_TYPE_IQ2_XXS) {
|
|
return false;
|
|
}
|
|
if (a->type == GGML_TYPE_IQ2_XS) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
} break;
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
} break;
|
|
case GGML_OP_CPY:
|
|
{
|
|
ggml_type src0_type = op->src[0]->type;
|
|
ggml_type src1_type = op->src[1]->type;
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
|
return true;
|
|
}
|
|
return false;
|
|
} break;
|
|
case GGML_OP_CONCAT:
|
|
{
|
|
ggml_type src0_type = op->src[0]->type;
|
|
if (src0_type == GGML_TYPE_F32) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} break;
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_REPEAT:
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_ALIBI:
|
|
case GGML_OP_IM2COL:
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_ACC:
|
|
case GGML_OP_GROUP_NORM:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_LEAKY_RELU:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static ggml_backend_i ggml_backend_sycl_interface = {
|
|
/* .get_name = */ ggml_backend_sycl_name,
|
|
/* .free = */ ggml_backend_sycl_free,
|
|
/* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
|
|
/* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
|
|
/* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
|
|
/* .cpy_tensor_async = */ NULL,
|
|
/* .synchronize = */ ggml_backend_sycl_synchronize,
|
|
/* .graph_plan_create = */ ggml_backend_sycl_graph_plan_create,
|
|
/* .graph_plan_free = */ ggml_backend_sycl_graph_plan_free,
|
|
/* .graph_plan_compute = */ ggml_backend_sycl_graph_plan_compute,
|
|
/* .graph_compute = */ ggml_backend_sycl_graph_compute,
|
|
/* .supports_op = */ ggml_backend_sycl_supports_op,
|
|
};
|
|
|
|
static ggml_guid_t ggml_backend_sycl_guid() {
|
|
static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 };
|
|
return &guid;
|
|
}
|
|
|
|
ggml_backend_t ggml_backend_sycl_init(int device) {
|
|
ggml_init_sycl(); // TODO: remove from ggml.c
|
|
|
|
if (device < 0 || device >= ggml_sycl_get_device_count()) {
|
|
fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
|
|
return nullptr;
|
|
}
|
|
|
|
// not strictly necessary, but it may reduce the overhead of the first graph_compute
|
|
ggml_sycl_set_main_device(device);
|
|
|
|
ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context {
|
|
/* .device = */ device,
|
|
/* .name = */ GGML_SYCL_NAME + std::to_string(device),
|
|
};
|
|
|
|
ggml_backend_t sycl_backend = new ggml_backend {
|
|
/* .guid = */ ggml_backend_sycl_guid(),
|
|
/* .interface = */ ggml_backend_sycl_interface,
|
|
/* .context = */ ctx
|
|
};
|
|
|
|
return sycl_backend;
|
|
}
|
|
|
|
bool ggml_backend_is_sycl(ggml_backend_t backend) {
|
|
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
|
|
}
|
|
|
|
static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
|
|
ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
|
|
return sycl_backend;
|
|
|
|
UNUSED(params);
|
|
}
|
|
|
|
extern "C" int ggml_backend_sycl_reg_devices();
|
|
|
|
int ggml_backend_sycl_reg_devices() {
|
|
int device_count = ggml_sycl_get_device_count();
|
|
|
|
for (int i = 0; i < device_count; i++) {
|
|
char name[128];
|
|
snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
|
|
ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
|
|
}
|
|
return device_count;
|
|
}
|