mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 21:34:36 +00:00
358 lines
13 KiB
C++
358 lines
13 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
#include "build-info.h"
|
|
|
|
#include <cmath>
|
|
#include <ctime>
|
|
#include <sstream>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
std::vector<float> softmax(const std::vector<float>& logits) {
|
|
std::vector<float> probs(logits.size());
|
|
float max_logit = logits[0];
|
|
for (float v : logits) max_logit = std::max(max_logit, v);
|
|
double sum_exp = 0.0;
|
|
for (size_t i = 0; i < logits.size(); i++) {
|
|
// Subtract the maximum logit value from the current logit value for numerical stability
|
|
const float logit = logits[i] - max_logit;
|
|
const float exp_logit = expf(logit);
|
|
sum_exp += exp_logit;
|
|
probs[i] = exp_logit;
|
|
}
|
|
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
|
|
return probs;
|
|
}
|
|
|
|
void perplexity(llama_context * ctx, const gpt_params & params) {
|
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
// BOS tokens will be added for each chunk before eval
|
|
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
const int n_chunk_max = tokens.size() / params.n_ctx;
|
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
|
const int n_vocab = llama_n_vocab(ctx);
|
|
const int n_batch = params.n_batch;
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
|
|
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
|
|
|
for (int i = 0; i < n_chunk; ++i) {
|
|
const int start = i * params.n_ctx;
|
|
const int end = start + params.n_ctx;
|
|
|
|
const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
|
|
|
|
std::vector<float> logits;
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
const int batch_start = start + j * n_batch;
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
// save original token and restore it after eval
|
|
const auto token_org = tokens[batch_start];
|
|
|
|
// add BOS token for the first batch of each chunk
|
|
if (j == 0) {
|
|
tokens[batch_start] = llama_token_bos();
|
|
}
|
|
|
|
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// restore the original token in case it was set to BOS
|
|
tokens[batch_start] = token_org;
|
|
|
|
const auto batch_logits = llama_get_logits(ctx);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
if (i == 0) {
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
int total_seconds = (int)(t_total * n_chunk);
|
|
if (total_seconds >= 60*60) {
|
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
total_seconds = total_seconds % (60*60);
|
|
}
|
|
fprintf(stderr, "%d minutes\n", total_seconds / 60);
|
|
}
|
|
|
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
|
// calculate the perplexity over the last half of the window (so the model always has
|
|
// some context to predict the token).
|
|
//
|
|
// We rely on the fact that attention in the forward pass only looks at previous
|
|
// tokens here, so the logits returned for each token are an accurate representation
|
|
// of what the model would have predicted at that point.
|
|
//
|
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
|
// process the entire prompt.
|
|
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
|
|
// Calculate probability of next token, given the previous ones.
|
|
const std::vector<float> tok_logits(
|
|
logits.begin() + (j + 0) * n_vocab,
|
|
logits.begin() + (j + 1) * n_vocab);
|
|
|
|
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
|
|
|
nll += -std::log(prob);
|
|
++count;
|
|
}
|
|
// perplexity is e^(average negative log-likelihood)
|
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
fflush(stdout);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|
// Calculates hellaswag score (acc_norm) from prompt
|
|
//
|
|
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
|
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
|
|
//
|
|
// All 10042 tasks should be extracted to keep the results standardized like other implementations.
|
|
//
|
|
// Datafile layout:
|
|
// ['??'] denotes json fields
|
|
// 6 lines per task:
|
|
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
|
|
// ['label'] - The index the best common sense ending aka gold ending
|
|
// ['endings'][0] - Endings added to the first part of the query
|
|
// ['endings'][1]
|
|
// ['endings'][2]
|
|
// ['endings'][3]
|
|
|
|
std::vector<std::string> prompt_lines;
|
|
std::istringstream strstream(params.prompt);
|
|
std::string line;
|
|
|
|
while (std::getline(strstream,line,'\n')) {
|
|
prompt_lines.push_back(line);
|
|
}
|
|
|
|
if( prompt_lines.size() % 6 != 0) {
|
|
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
|
return;
|
|
}
|
|
|
|
size_t hs_task_count = prompt_lines.size()/6;
|
|
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
|
|
|
// This is needed as usual for LLaMA models
|
|
bool prepend_bos = true;
|
|
|
|
// Number of tasks to use when computing the score
|
|
if ( params.hellaswag_tasks < hs_task_count ) {
|
|
hs_task_count = params.hellaswag_tasks;
|
|
}
|
|
|
|
// The tasks should be randomized so the score stabilizes quickly.
|
|
bool randomize_tasks = true;
|
|
|
|
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
|
|
std::mt19937 rng(1);
|
|
|
|
// Dataholder for hellaswag tasks
|
|
struct hs_data_t {
|
|
std::string context;
|
|
size_t gold_ending_idx;
|
|
std::string ending[4];
|
|
size_t ending_logprob_count[4];
|
|
double ending_logprob[4];
|
|
};
|
|
|
|
fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
|
|
|
// Select and read data from prompt lines
|
|
hs_data_t *hs_data = new hs_data_t[hs_task_count];
|
|
for (size_t i=0; i < hs_task_count; i++) {
|
|
size_t idx = i;
|
|
|
|
// Select a random example of those left in the prompt
|
|
if (randomize_tasks) {
|
|
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
|
|
idx = dist(rng);
|
|
}
|
|
|
|
hs_data[i].context = prompt_lines[idx*6];
|
|
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
|
for (size_t j=0; j < 4; j++) {
|
|
hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j];
|
|
}
|
|
|
|
// Delete the selected random example from the prompt
|
|
if (randomize_tasks) {
|
|
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
|
|
printf("\ntask\tacc_norm\n");
|
|
|
|
double acc = 0.0f;
|
|
const int n_vocab = llama_n_vocab(ctx);
|
|
|
|
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
|
|
|
|
// Tokenize the context to count tokens
|
|
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
|
|
size_t context_size = context_embd.size();
|
|
|
|
for (size_t ending_idx=0;ending_idx<4;ending_idx++) {
|
|
|
|
// Tokenize the query
|
|
std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos);
|
|
size_t query_size = query_embd.size();
|
|
|
|
// Stop if query wont fit the ctx window
|
|
if (query_size > (size_t)params.n_ctx) {
|
|
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
|
return;
|
|
}
|
|
|
|
// Speedup small evaluations by evaluating atleast 32 tokens
|
|
if (query_size < 32) {
|
|
query_embd.resize(32);
|
|
}
|
|
|
|
// Evaluate the query
|
|
if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return;
|
|
}
|
|
|
|
const auto query_logits = llama_get_logits(ctx);
|
|
std::vector<float> logits;
|
|
logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab);
|
|
|
|
hs_data[task_idx].ending_logprob_count[ending_idx] = 0;
|
|
hs_data[task_idx].ending_logprob[ending_idx] = 0.0f;
|
|
|
|
// Calculate the logprobs over the ending
|
|
for (size_t j = context_size-1; j < query_size - 1; j++) {
|
|
// Calculate probability of next token, given the previous ones.
|
|
const std::vector<float> tok_logits(
|
|
logits.begin() + (j + 0) * n_vocab,
|
|
logits.begin() + (j + 1) * n_vocab);
|
|
|
|
const float prob = softmax(tok_logits)[query_embd[ j + 1]];
|
|
|
|
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
|
|
hs_data[task_idx].ending_logprob_count[ending_idx]++;
|
|
}
|
|
|
|
// Calculate the mean token logprob for acc_norm
|
|
hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
|
|
|
|
|
|
// printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
|
|
// task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
|
|
}
|
|
|
|
// Find the ending with maximum logprob
|
|
size_t ending_logprob_max_idx = -1;
|
|
double ending_logprob_max_val = -INFINITY;
|
|
for (size_t j=0; j < 4; j++) {
|
|
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
|
|
ending_logprob_max_idx = j;
|
|
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
|
|
}
|
|
}
|
|
|
|
// printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
|
|
|
|
// If the gold ending got the maximum logprobe add one accuracy point
|
|
if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
|
|
acc += 1.0;
|
|
}
|
|
|
|
// Print the accumulated accuracy mean x 100
|
|
printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
|
|
fflush(stdout);
|
|
}
|
|
|
|
delete [] hs_data;
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
params.n_batch = 512;
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
params.perplexity = true;
|
|
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
|
|
|
if (params.n_ctx > 2048) {
|
|
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
|
"expect poor results\n", __func__, params.n_ctx);
|
|
}
|
|
|
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
|
|
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
// load the model and apply lora adapter, if any
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
}
|
|
|
|
if (params.hellaswag) {
|
|
hellaswag_score(ctx, params);
|
|
} else {
|
|
perplexity(ctx, params);
|
|
}
|
|
|
|
llama_print_timings(ctx);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|