mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
dc685be466
* CUDA: add FP32 FlashAttention vector kernel * fixup! CUDA: add FP32 FlashAttention vector kernel * fixup! fixup! CUDA: add FP32 FlashAttention vector kernel * fixup! fixup! fixup! CUDA: add FP32 FlashAttention vector kernel
431 lines
15 KiB
Plaintext
431 lines
15 KiB
Plaintext
#include "common.cuh"
|
|
#include "fattn-common.cuh"
|
|
#include "fattn-vec-f16.cuh"
|
|
|
|
template<int D, int ncols, int parallel_blocks> // D == head size
|
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
__launch_bounds__(D, 1)
|
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
static __global__ void flash_attn_vec_ext_f16(
|
|
const char * __restrict__ Q,
|
|
const char * __restrict__ K,
|
|
const char * __restrict__ V,
|
|
const char * __restrict__ mask,
|
|
float * __restrict__ dst,
|
|
float2 * __restrict__ dst_meta,
|
|
const float scale,
|
|
const float max_bias,
|
|
const float m0,
|
|
const float m1,
|
|
const uint32_t n_head_log2,
|
|
const int ne00,
|
|
const int ne01,
|
|
const int ne02,
|
|
const int ne03,
|
|
const int ne10,
|
|
const int ne11,
|
|
const int ne12,
|
|
const int ne13,
|
|
const int ne31,
|
|
const int nb31,
|
|
const int nb01,
|
|
const int nb02,
|
|
const int nb03,
|
|
const int nb11,
|
|
const int nb12,
|
|
const int nb13,
|
|
const int ne0,
|
|
const int ne1,
|
|
const int ne2,
|
|
const int ne3) {
|
|
#if FP16_AVAILABLE
|
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
|
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
|
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
|
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
|
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
|
const half * maskh = (const half *) mask + ne11*ic0;
|
|
|
|
const int stride_KV = nb11 / sizeof(half);
|
|
const int stride_KV2 = nb11 / sizeof(half2);
|
|
|
|
half slopeh = __float2half(1.0f);
|
|
|
|
// ALiBi
|
|
if (max_bias > 0.0f) {
|
|
const int h = blockIdx.y;
|
|
|
|
const float base = h < n_head_log2 ? m0 : m1;
|
|
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
|
|
slopeh = __float2half(powf(base, exph));
|
|
}
|
|
|
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
|
constexpr int nwarps = D / WARP_SIZE;
|
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
__builtin_assume(tid < D);
|
|
|
|
__shared__ half KQ[ncols*D];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
KQ[j*D + tid] = -HALF_MAX_HALF;
|
|
}
|
|
half2 * KQ2 = (half2 *) KQ;
|
|
|
|
half kqmax[ncols];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
kqmax[j] = -HALF_MAX_HALF;
|
|
}
|
|
half kqsum[ncols] = {0.0f};
|
|
|
|
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
|
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
if (threadIdx.y == 0) {
|
|
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
|
kqsum_shared[j][threadIdx.x] = 0.0f;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
// Convert Q to half2 and store in registers:
|
|
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
|
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
|
}
|
|
}
|
|
|
|
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
|
|
|
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
|
|
|
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
|
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
|
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
|
half kqmax_new = kqmax[0];
|
|
half kqmax_new_arr[ncols];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
kqmax_new_arr[j] = kqmax[j];
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
|
|
|
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
|
break;
|
|
}
|
|
|
|
half2 sum2[ncols] = {{0.0f, 0.0f}};
|
|
#pragma unroll
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
|
|
}
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
sum2[j] = warp_reduce_sum(sum2[j]);
|
|
half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
|
|
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
|
|
|
if (ncols == 1) {
|
|
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
|
} else {
|
|
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
KQ[j*D + i_KQ] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
|
|
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
if (threadIdx.x == 0) {
|
|
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
|
|
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
|
kqmax[j] = kqmax_new_j;
|
|
|
|
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
|
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
|
KQ[j*D + tid] = val;
|
|
|
|
VKQ[j] *= __half2half2(KQ_max_scale);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < D; k0 += 2) {
|
|
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
|
break;
|
|
}
|
|
|
|
half2 V_k;
|
|
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
|
|
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
|
if (threadIdx.x == 0) {
|
|
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
|
|
|
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
|
if (parallel_blocks == 1) {
|
|
dst_val /= kqsum[j_VKQ];
|
|
}
|
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
|
}
|
|
|
|
if (parallel_blocks != 1 && tid != 0) {
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
|
|
}
|
|
}
|
|
#else
|
|
NO_DEVICE_CODE;
|
|
#endif // FP16_AVAILABLE
|
|
}
|
|
|
|
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f16(
|
|
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
|
ggml_cuda_pool & pool, cudaStream_t main_stream
|
|
) {
|
|
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
|
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
|
|
|
if (parallel_blocks > 1) {
|
|
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
|
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
|
}
|
|
|
|
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
|
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
|
const int shmem = 0;
|
|
|
|
float scale = 1.0f;
|
|
float max_bias = 0.0f;
|
|
|
|
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
|
|
|
const uint32_t n_head = Q->ne[2];
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>
|
|
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
|
(const char *) Q->data,
|
|
(const char *) K->data,
|
|
(const char *) V->data,
|
|
mask ? ((const char *) mask->data) : nullptr,
|
|
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
scale, max_bias, m0, m1, n_head_log2,
|
|
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
Q->nb[1], Q->nb[2], Q->nb[3],
|
|
K->nb[1], K->nb[2], K->nb[3],
|
|
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
if (parallel_blocks == 1) {
|
|
return;
|
|
}
|
|
|
|
const dim3 block_dim_combine(D, 1, 1);
|
|
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
const int shmem_combine = 0;
|
|
|
|
flash_attn_combine_results<D, parallel_blocks>
|
|
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * Q = dst->src[0];
|
|
const ggml_tensor * K = dst->src[1];
|
|
const ggml_tensor * V = dst->src[2];
|
|
|
|
const ggml_tensor * mask = dst->src[3];
|
|
|
|
ggml_tensor * KQV = dst;
|
|
|
|
const int32_t precision = KQV->op_params[2];
|
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
|
|
|
constexpr int cols_per_block = 1;
|
|
constexpr int parallel_blocks = 4;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
case 128:
|
|
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
case 256:
|
|
launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * Q = dst->src[0];
|
|
const ggml_tensor * K = dst->src[1];
|
|
const ggml_tensor * V = dst->src[2];
|
|
|
|
const ggml_tensor * mask = dst->src[3];
|
|
|
|
ggml_tensor * KQV = dst;
|
|
|
|
const int32_t precision = KQV->op_params[2];
|
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
|
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
|
|
|
if (Q->ne[1] == 1) {
|
|
constexpr int cols_per_block = 1;
|
|
constexpr int parallel_blocks = 4;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
case 128:
|
|
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Q->ne[1] == 2) {
|
|
constexpr int cols_per_block = 2;
|
|
constexpr int parallel_blocks = 4;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
case 128:
|
|
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Q->ne[1] <= 4) {
|
|
constexpr int cols_per_block = 4;
|
|
constexpr int parallel_blocks = 4;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
case 128:
|
|
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Q->ne[1] <= 8) {
|
|
constexpr int cols_per_block = 8;
|
|
constexpr int parallel_blocks = 4;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
case 128:
|
|
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
constexpr int cols_per_block = 8;
|
|
constexpr int parallel_blocks = 1;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
case 128:
|
|
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|