mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-06 16:51:45 +00:00
ec893798b7
* tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
381 lines
14 KiB
C++
381 lines
14 KiB
C++
// A basic application simulating a server with multiple clients.
|
|
// The clients submite requests to the server and they are processed in parallel.
|
|
|
|
#include "build-info.h"
|
|
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
// trim whitespace from the beginning and end of a string
|
|
static std::string trim(const std::string & str) {
|
|
size_t start = 0;
|
|
size_t end = str.size();
|
|
|
|
while (start < end && isspace(str[start])) {
|
|
start += 1;
|
|
}
|
|
|
|
while (end > start && isspace(str[end - 1])) {
|
|
end -= 1;
|
|
}
|
|
|
|
return str.substr(start, end - start);
|
|
}
|
|
|
|
static std::string k_system =
|
|
R"(Transcript of a never ending dialog, where the User interacts with an Assistant.
|
|
The Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.
|
|
|
|
User: Recommend a nice restaurant in the area.
|
|
Assistant: I recommend the restaurant "The Golden Duck". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays.
|
|
User: Who is Richard Feynman?
|
|
Assistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including "Surely You're Joking, Mr. Feynman!" and "What Do You Care What Other People Think?".
|
|
User:)";
|
|
|
|
static std::vector<std::string> k_prompts = {
|
|
"What is the meaning of life?",
|
|
"Tell me an interesting fact about llamas.",
|
|
"What is the best way to cook a steak?",
|
|
"Are you familiar with the Special Theory of Relativity and can you explain it to me?",
|
|
"Recommend some interesting books to read.",
|
|
"What is the best way to learn a new language?",
|
|
"How to get a job at Google?",
|
|
"If you could have any superpower, what would it be?",
|
|
"I want to learn how to play the piano.",
|
|
};
|
|
|
|
struct client {
|
|
int32_t id = 0;
|
|
|
|
llama_seq_id seq_id = -1;
|
|
|
|
llama_token sampled;
|
|
|
|
int64_t t_start_prompt;
|
|
int64_t t_start_gen;
|
|
|
|
int32_t n_prompt = 0;
|
|
int32_t n_decoded = 0;
|
|
int32_t i_batch = -1;
|
|
|
|
std::string input;
|
|
std::string prompt;
|
|
std::string response;
|
|
|
|
std::vector<llama_token> tokens_prev;
|
|
};
|
|
|
|
int main(int argc, char ** argv) {
|
|
srand(1234);
|
|
|
|
gpt_params params;
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
// number of simultaneous "clients" to simulate
|
|
const int32_t n_clients = params.n_parallel;
|
|
|
|
// requests to simulate
|
|
const int32_t n_seq = params.n_sequences;
|
|
|
|
// insert new requests as soon as the previous one is done
|
|
const bool cont_batching = params.cont_batching;
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
log_set_target(log_filename_generator("parallel", "log"));
|
|
LOG_TEE("Log start\n");
|
|
log_dump_cmdline(argc, argv);
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
// init llama.cpp
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model * model = NULL;
|
|
llama_context * ctx = NULL;
|
|
|
|
// load the target model
|
|
params.logits_all = true;
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
|
|
fprintf(stderr, "\n\n");
|
|
fflush(stderr);
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
const int n_vocab = llama_n_vocab(ctx);
|
|
|
|
std::vector<client> clients(n_clients);
|
|
for (size_t i = 0; i < clients.size(); ++i) {
|
|
auto & client = clients[i];
|
|
client.id = i;
|
|
client.tokens_prev.resize(std::max(256, params.n_predict));
|
|
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
|
|
std::vector<llama_token> tokens_system;
|
|
tokens_system = ::llama_tokenize(ctx, k_system, true);
|
|
const int32_t n_tokens_system = tokens_system.size();
|
|
|
|
llama_seq_id g_seq_id = 0;
|
|
|
|
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
|
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
|
llama_batch batch = llama_batch_init(params.n_ctx, 0);
|
|
|
|
int32_t n_total_prompt = 0;
|
|
int32_t n_total_gen = 0;
|
|
int32_t n_cache_miss = 0;
|
|
|
|
const auto t_main_start = ggml_time_us();
|
|
|
|
LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__);
|
|
LOG_TEE("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
|
|
LOG_TEE("\n");
|
|
|
|
{
|
|
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
|
|
|
|
batch.n_tokens = n_tokens_system;
|
|
|
|
for (int32_t i = 0; i < batch.n_tokens; ++i) {
|
|
batch.token[i] = tokens_system[i];
|
|
batch.pos[i] = i;
|
|
batch.seq_id[i] = 0;
|
|
batch.logits[i] = false;
|
|
}
|
|
|
|
if (llama_decode(ctx, batch, params.n_threads) != 0) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// assign the system KV cache to all parallel sequences
|
|
for (int32_t i = 1; i < n_clients; ++i) {
|
|
llama_kv_cache_seq_cp(ctx, 0, i, 0, n_tokens_system);
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
}
|
|
|
|
LOG_TEE("Processing requests ...\n\n");
|
|
|
|
while (true) {
|
|
batch.n_tokens = 0;
|
|
|
|
// decode any currently ongoing sequences
|
|
for (auto & client : clients) {
|
|
if (client.seq_id == -1) {
|
|
continue;
|
|
}
|
|
|
|
batch.token [batch.n_tokens] = client.sampled;
|
|
batch.pos [batch.n_tokens] = n_tokens_system + client.n_prompt + client.n_decoded;
|
|
batch.seq_id[batch.n_tokens] = client.id;
|
|
batch.logits[batch.n_tokens] = true;
|
|
|
|
client.n_decoded += 1;
|
|
client.i_batch = batch.n_tokens;
|
|
|
|
batch.n_tokens += 1;
|
|
}
|
|
|
|
if (batch.n_tokens == 0) {
|
|
// all sequences have ended - clear the entire KV cache
|
|
for (int i = 0; i < n_clients; ++i) {
|
|
llama_kv_cache_seq_rm(ctx, i, n_tokens_system, -1);
|
|
}
|
|
|
|
LOG_TEE("%s: clearing the KV cache\n", __func__);
|
|
}
|
|
|
|
// insert new sequences for decoding
|
|
if (cont_batching || batch.n_tokens == 0) {
|
|
for (auto & client : clients) {
|
|
if (client.seq_id == -1 && g_seq_id < n_seq) {
|
|
client.seq_id = g_seq_id;
|
|
|
|
client.t_start_prompt = ggml_time_us();
|
|
client.t_start_gen = 0;
|
|
|
|
client.input = k_prompts[rand() % k_prompts.size()];
|
|
client.prompt = client.input + "\nAssistant:";
|
|
client.response = "";
|
|
|
|
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
|
|
|
// do not prepend BOS because we have a system prompt!
|
|
std::vector<llama_token> tokens_prompt;
|
|
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
|
|
|
|
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
|
batch.token [batch.n_tokens] = tokens_prompt[i];
|
|
batch.pos [batch.n_tokens] = i + n_tokens_system;
|
|
batch.seq_id[batch.n_tokens] = client.id;
|
|
batch.logits[batch.n_tokens] = false;
|
|
batch.n_tokens += 1;
|
|
}
|
|
|
|
// extract the logits only for the last token
|
|
if (batch.n_tokens > 0) {
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
}
|
|
|
|
client.n_prompt = tokens_prompt.size();
|
|
client.n_decoded = 0;
|
|
client.i_batch = batch.n_tokens - 1;
|
|
|
|
LOG_TEE("\033[1mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
|
|
|
g_seq_id += 1;
|
|
|
|
// insert new requests one-by-one
|
|
//if (cont_batching) {
|
|
// break;
|
|
//}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens == 0) {
|
|
break;
|
|
}
|
|
|
|
// process in chunks of params.n_batch
|
|
int32_t n_batch = params.n_batch;
|
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
|
// experiment: process in powers of 2
|
|
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
|
|
// n_batch /= 2;
|
|
// i -= n_batch;
|
|
// continue;
|
|
//}
|
|
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view, params.n_threads);
|
|
if (ret != 0) {
|
|
if (n_batch == 1 || ret < 0) {
|
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
|
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
|
return 1;
|
|
}
|
|
|
|
LOG("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
|
|
|
n_cache_miss += 1;
|
|
|
|
// retry with half the batch size to try to find a free slot in the KV cache
|
|
n_batch /= 2;
|
|
i -= n_batch;
|
|
|
|
continue;
|
|
}
|
|
|
|
LOG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
|
|
|
|
for (auto & client : clients) {
|
|
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
|
|
continue;
|
|
}
|
|
|
|
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
|
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
|
|
|
const llama_token id = llama_sample_token(ctx, NULL, NULL, params, client.tokens_prev, candidates, client.i_batch - i);
|
|
|
|
if (client.n_decoded == 1) {
|
|
// start measuring generation time after the first token to make sure all concurrent clients
|
|
// have their prompt already processed
|
|
client.t_start_gen = ggml_time_us();
|
|
}
|
|
|
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
client.tokens_prev.erase(client.tokens_prev.begin());
|
|
client.tokens_prev.push_back(id);
|
|
|
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
client.response += token_str;
|
|
client.sampled = id;
|
|
|
|
//printf("client %d, seq %d, token %d, pos %d, batch %d: %s\n",
|
|
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
|
|
|
|
if (client.n_decoded > 2 &&
|
|
(id == llama_token_eos(ctx) ||
|
|
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
|
|
client.response.find("User:") != std::string::npos ||
|
|
client.response.find('\n') != std::string::npos)) {
|
|
// basic reverse prompt
|
|
const size_t pos = client.response.find("User:");
|
|
if (pos != std::string::npos) {
|
|
client.response = client.response.substr(0, pos);
|
|
}
|
|
|
|
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
|
|
llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, n_ctx);
|
|
|
|
const auto t_main_end = ggml_time_us();
|
|
|
|
LOG_TEE("\033[1mClient %3d, seq %4d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \n\nInput: %s\nResponse: %s\n\n",
|
|
client.id, client.seq_id, client.n_prompt, client.n_decoded,
|
|
(t_main_end - client.t_start_prompt) / 1e6,
|
|
(double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6,
|
|
n_cache_miss,
|
|
::trim(client.input).c_str(),
|
|
::trim(client.response).c_str());
|
|
|
|
n_total_prompt += client.n_prompt;
|
|
n_total_gen += client.n_decoded;
|
|
|
|
client.seq_id = -1;
|
|
}
|
|
|
|
client.i_batch = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
const auto t_main_end = ggml_time_us();
|
|
|
|
LOG_TEE("\n\n");
|
|
LOG_TEE("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
|
|
LOG_TEE("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
|
|
LOG_TEE("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6);
|
|
LOG_TEE("Cache misses: %6d\n", n_cache_miss);
|
|
|
|
LOG_TEE("\n\n");
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
llama_batch_free(batch);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
return 0;
|
|
}
|