mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 23:34:35 +00:00
57bb2c40cd
* server : fix logprobs, make it openai-compatible * update docs * add std::log * return pre-sampling p * sort before apply softmax * add comment * fix test * set p for sampled token * update docs * add --multi-token-probs * update docs * add `post_sampling_probs` option * update docs [no ci] * remove --multi-token-probs * "top_probs" with "post_sampling_probs" * resolve review comments * rename struct token_prob to prob_info * correct comment placement * fix setting prob for sampled token
226 lines
8.2 KiB
Python
226 lines
8.2 KiB
Python
import pytest
|
|
from openai import OpenAI
|
|
from utils import *
|
|
|
|
server = ServerPreset.tinyllama2()
|
|
|
|
|
|
@pytest.fixture(scope="module", autouse=True)
|
|
def create_server():
|
|
global server
|
|
server = ServerPreset.tinyllama2()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
|
|
[
|
|
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
|
|
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
|
|
]
|
|
)
|
|
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
|
|
global server
|
|
server.start()
|
|
res = server.make_request("POST", "/chat/completions", data={
|
|
"model": model,
|
|
"max_tokens": max_tokens,
|
|
"messages": [
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": user_prompt},
|
|
],
|
|
})
|
|
assert res.status_code == 200
|
|
assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
|
|
assert res.body["model"] == model if model is not None else server.model_alias
|
|
assert res.body["usage"]["prompt_tokens"] == n_prompt
|
|
assert res.body["usage"]["completion_tokens"] == n_predicted
|
|
choice = res.body["choices"][0]
|
|
assert "assistant" == choice["message"]["role"]
|
|
assert match_regex(re_content, choice["message"]["content"])
|
|
assert choice["finish_reason"] == finish_reason
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
|
|
[
|
|
("Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
|
|
("You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
|
|
]
|
|
)
|
|
def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
|
|
global server
|
|
server.model_alias = None # try using DEFAULT_OAICOMPAT_MODEL
|
|
server.start()
|
|
res = server.make_stream_request("POST", "/chat/completions", data={
|
|
"max_tokens": max_tokens,
|
|
"messages": [
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": user_prompt},
|
|
],
|
|
"stream": True,
|
|
})
|
|
content = ""
|
|
last_cmpl_id = None
|
|
for data in res:
|
|
choice = data["choices"][0]
|
|
assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
|
|
if last_cmpl_id is None:
|
|
last_cmpl_id = data["id"]
|
|
assert last_cmpl_id == data["id"] # make sure the completion id is the same for all events in the stream
|
|
if choice["finish_reason"] in ["stop", "length"]:
|
|
assert data["usage"]["prompt_tokens"] == n_prompt
|
|
assert data["usage"]["completion_tokens"] == n_predicted
|
|
assert "content" not in choice["delta"]
|
|
assert match_regex(re_content, content)
|
|
assert choice["finish_reason"] == finish_reason
|
|
else:
|
|
assert choice["finish_reason"] is None
|
|
content += choice["delta"]["content"]
|
|
|
|
|
|
def test_chat_completion_with_openai_library():
|
|
global server
|
|
server.start()
|
|
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
|
res = client.chat.completions.create(
|
|
model="gpt-3.5-turbo-instruct",
|
|
messages=[
|
|
{"role": "system", "content": "Book"},
|
|
{"role": "user", "content": "What is the best book"},
|
|
],
|
|
max_tokens=8,
|
|
seed=42,
|
|
temperature=0.8,
|
|
)
|
|
assert res.choices[0].finish_reason == "length"
|
|
assert res.choices[0].message.content is not None
|
|
assert match_regex("(Suddenly)+", res.choices[0].message.content)
|
|
|
|
|
|
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
|
|
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
|
|
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
|
|
({"type": "json_object"}, 10, "(\\{|John)+"),
|
|
({"type": "sound"}, 0, None),
|
|
# invalid response format (expected to fail)
|
|
({"type": "json_object", "schema": 123}, 0, None),
|
|
({"type": "json_object", "schema": {"type": 123}}, 0, None),
|
|
({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
|
|
])
|
|
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
|
|
global server
|
|
server.start()
|
|
res = server.make_request("POST", "/chat/completions", data={
|
|
"max_tokens": n_predicted,
|
|
"messages": [
|
|
{"role": "system", "content": "You are a coding assistant."},
|
|
{"role": "user", "content": "Write an example"},
|
|
],
|
|
"response_format": response_format,
|
|
})
|
|
if re_content is not None:
|
|
assert res.status_code == 200
|
|
choice = res.body["choices"][0]
|
|
assert match_regex(re_content, choice["message"]["content"])
|
|
else:
|
|
assert res.status_code != 200
|
|
assert "error" in res.body
|
|
|
|
|
|
@pytest.mark.parametrize("messages", [
|
|
None,
|
|
"string",
|
|
[123],
|
|
[{}],
|
|
[{"role": 123}],
|
|
[{"role": "system", "content": 123}],
|
|
# [{"content": "hello"}], # TODO: should not be a valid case
|
|
[{"role": "system", "content": "test"}, {}],
|
|
])
|
|
def test_invalid_chat_completion_req(messages):
|
|
global server
|
|
server.start()
|
|
res = server.make_request("POST", "/chat/completions", data={
|
|
"messages": messages,
|
|
})
|
|
assert res.status_code == 400 or res.status_code == 500
|
|
assert "error" in res.body
|
|
|
|
|
|
def test_chat_completion_with_timings_per_token():
|
|
global server
|
|
server.start()
|
|
res = server.make_stream_request("POST", "/chat/completions", data={
|
|
"max_tokens": 10,
|
|
"messages": [{"role": "user", "content": "test"}],
|
|
"stream": True,
|
|
"timings_per_token": True,
|
|
})
|
|
for data in res:
|
|
assert "timings" in data
|
|
assert "prompt_per_second" in data["timings"]
|
|
assert "predicted_per_second" in data["timings"]
|
|
assert "predicted_n" in data["timings"]
|
|
assert data["timings"]["predicted_n"] <= 10
|
|
|
|
|
|
def test_logprobs():
|
|
global server
|
|
server.start()
|
|
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
|
res = client.chat.completions.create(
|
|
model="gpt-3.5-turbo-instruct",
|
|
temperature=0.0,
|
|
messages=[
|
|
{"role": "system", "content": "Book"},
|
|
{"role": "user", "content": "What is the best book"},
|
|
],
|
|
max_tokens=5,
|
|
logprobs=True,
|
|
top_logprobs=10,
|
|
)
|
|
output_text = res.choices[0].message.content
|
|
aggregated_text = ''
|
|
assert res.choices[0].logprobs is not None
|
|
assert res.choices[0].logprobs.content is not None
|
|
for token in res.choices[0].logprobs.content:
|
|
aggregated_text += token.token
|
|
assert token.logprob <= 0.0
|
|
assert token.bytes is not None
|
|
assert len(token.top_logprobs) > 0
|
|
assert aggregated_text == output_text
|
|
|
|
|
|
def test_logprobs_stream():
|
|
global server
|
|
server.start()
|
|
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
|
res = client.chat.completions.create(
|
|
model="gpt-3.5-turbo-instruct",
|
|
temperature=0.0,
|
|
messages=[
|
|
{"role": "system", "content": "Book"},
|
|
{"role": "user", "content": "What is the best book"},
|
|
],
|
|
max_tokens=5,
|
|
logprobs=True,
|
|
top_logprobs=10,
|
|
stream=True,
|
|
)
|
|
output_text = ''
|
|
aggregated_text = ''
|
|
for data in res:
|
|
choice = data.choices[0]
|
|
if choice.finish_reason is None:
|
|
if choice.delta.content:
|
|
output_text += choice.delta.content
|
|
assert choice.logprobs is not None
|
|
assert choice.logprobs.content is not None
|
|
for token in choice.logprobs.content:
|
|
aggregated_text += token.token
|
|
assert token.logprob <= 0.0
|
|
assert token.bytes is not None
|
|
assert token.top_logprobs is not None
|
|
assert len(token.top_logprobs) > 0
|
|
assert aggregated_text == output_text
|