mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
44c117f41e
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train * remove unnecessary Adam(W) optimizer tensors. reduces optimizer memory overhead from 7*modelsize to 2*modelsize. additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t. bumps training checkpoint file version, but old checkpoints can still be read. new version with less tensors is saved. * add gradient clipping to AdamW * Fix reset of unused g->nodes and g->grads to NULL * implement gradient checkpointing for training reduces memory overhead from O(n_layer) to O(sqrt(n_layer)) as explained in readme of https://github.com/cybertronai/gradient-checkpointing * remove unused compute buffer 3 * add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); * change AdamW decay parameter to work like the torch AdamW decay parameter It is now relative to Adam learning rate `alpha*sched`. Before that it was relative to `sched` only. `alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1] * change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT * change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW btw: the default weight decay parameter for torch.optim.AdamW is 0.01 * bug fixes for cross entropy loss ggml_cross_entropy_loss: sums where not correctly added in workload of each thread ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16 cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup. so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance. * fix test-grad0 for cross_entropy_loss the second argument to cross_entropy_loss must sum up to 1 for each row * fix test-grad0 for soft_max dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) * improve finite differences of test-grad0 by using double instead of float * change cross_entropy_loss to output average over all rows this helps keeping the loss and gradients in a sane range * improve gradient checkpointing sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal. since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different: ``` given: n, u, v objective: minimize(a*u+b*v) where a*b=n, a>0, b>0 b=n/a minimize(a*u+v*n/a) diff(a*u+v*n/a, a) = u - (v*n/a)/a diff(a*u+v*n/a, a) == 0 u - (v*n/a)/a == 0 u == v*n/(a*a) u*a*a = v*n a*a = v*n/u a = sqrt(n*v/u) ``` this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage. * disable gradient checkpointing debug output * llama : fix rope usage in train-text-from-scratch after ChatGLM change * add more training parameters: --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. --adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha * replace memcpy with reshape operation so that the graph is not cut at the input this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it * remove unused function argument from get_example_targets_batch * measure and print total training time * add optimization callback to ggml_opt_resume_g this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)). can be used for dynamic learning schedule and setting input data for batches before each iteration * use optimization callback in training allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration * add minimum number of tensor dimensions to apply weight decay (default 2) this allows to not apply weight decay to bias parameters * rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup * fix increase of model.train_samples and model.train_tokens now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations * change sampling parameters for prediction after training to defaults of common.h and clarify what is context for prediction and what are generated tokens * tighten abs error bounds for cross_entropy_loss in test-grad0 * add conditional compilation of using F16 exp in flash attention uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention * tighten abs error bounds for flash_attn in test-grad0 * tighten abs error bounds for sqrt in test-grad0 * remove out-commented vectorized code of opt_adam the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead * ggml : update ggml_rms_norm_back with configurable eps * llama training : fix ggml_rms_norm_back calls to pass configurable eps * remove trailing whitespace * add train function using automatic gradient checkpointing backward pass and allocator * in train function replace add_inplace by regular add because using add_inplace seems to result in different gradients * don't use allocate hash_map on context because the context has no_alloc=True when using memory allocator resulting in NULL data pointers * correctly clone reshape and permute operations by also cloning tensor->nb values * fix variable name and add missing type cast * terminate recursive tensor cloning when reaching tensor without src tensors * correctly clone view tensors by setting data pointers without this the checkpointing would only work when being used together with memory allocator * fix variable names * swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn` * add input tensors as checkpoints so that recursive tensor cloning of gradient checkpointing terminates on input tensors * fix variable name and add missing boolean negation * make sure some tensors are not reallocated by inserting new temporary nodes depending on them: output and parameter gradient tensors need to be available at the end of the graph execution parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration checkpoint tensors are allocated all together to reduce memory allocator fragmentation afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs * fix ASSERT to work with zero layers * add training options whether to use allocator and/or unified training function * integrate unified training function which may use memory allocator the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing * format name of cloned tensors with " (clone)" suffix * set names for tensors in unified train function for easier debugging * allocate graph on context using ggml_new_graph * remove handwritten training functions * remove unused training parameters "use_scratch" and "use_unified" * remove trailing whitespace * remove unused train params: mem_compute1_gb & mem_compute2_gb mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented) * remove unused forward_batch function * add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly * only use ggml_allocr_alloc when tensor has NULL data and is no view * fix test when to create temporary backward graph temporary backward graph is only necessary when using checkpointing * fix memory "leak" in optimizers each iteration a new cplan with new memory for work data was allocated. now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data. * reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory. the computation results are the same * add missing lctx argument to get_example_targets_batch * implement llama model file saving using gguf checkpoint loading and saving disabled, to be replaced by loading and saving via gguf * implement loading/saving of checkpointing files using GGUF * bug fixes * add checkpoint file version for future compatibility * update readme with gguf filenames * save & load opt->just_initialized value * add first draft for checkpoint conversion script * add gguf arch and ftype * save opt parameter counter as uint64 * add gguf key and tensor names for optimizer and training * add layer_norm_rms_eps to checkpoint convert script * use same GGUF_GET_KEY macro as in llama.cpp * use norm_rms_eps, and rope parameters and command line options to set them * fix memory corruption bug in gguf ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free. to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function. so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying and freeing the old data. * add gguf example cmake file * bug fixes in tokenize_file * bug fixes in load_llama_model_gguf * bug fix: init model when no checkpoint was loaded * bug fix in read_tensor_by_name * bug fix in load_opt_context_gguf * avoid printing lots of spaced on the unusual case that loss gets nan * set name of tensors with empty name from what was read from gguf * remove trailing whitespace * print data checksums before saving and after loading to verify correctness * bug fixes for convert-train-checkpoint-to-gguf * temporarily add code to write old checkpoint files used to verify that old checkpoint files are correctly converted to gguf * bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0 * remove code used to verify correctness of checkpoint file conversion * remove trailing whitespace * remove prediction related code use main for prediction, it is better optimized * update train-text-from-scratch README.md * fix non-windows GGML_ALIGNED_REALLOC * add missing blank line at end of file * remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos * train : fix compile warnings --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
959 lines
36 KiB
C++
959 lines
36 KiB
C++
#include "ggml.h"
|
|
#include "llama.h"
|
|
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstring>
|
|
#include <cstdarg>
|
|
#include <ctime>
|
|
#include <random>
|
|
#include <stdexcept>
|
|
#include <sstream>
|
|
#include <algorithm>
|
|
#include <string>
|
|
|
|
// GGUF keys & tensor names.
|
|
|
|
#define KV_GENERAL_ARCHITECTURE "general.architecture"
|
|
#define KV_GENERAL_NAME "general.name"
|
|
|
|
#define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
|
|
#define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
|
|
#define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
|
|
#define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
|
|
#define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
|
|
#define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
|
|
#define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
|
|
#define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
|
|
#define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
|
|
#define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
|
|
|
|
#define KV_CONTEXT_LENGTH "llama.context_length"
|
|
#define KV_EMBEDDING_LENGTH "llama.embedding_length"
|
|
#define KV_BLOCK_COUNT "llama.block_count"
|
|
#define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
|
|
#define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
|
|
#define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
|
|
#define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
|
|
#define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
|
|
|
|
#define TN_TOKEN_EMBD "token_embd.weight"
|
|
#define TN_OUTPUT_NORM "output_norm.weight"
|
|
#define TN_OUTPUT "output.weight"
|
|
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
|
|
#define TN_ATTN_Q "blk.%d.attn_q.weight"
|
|
#define TN_ATTN_K "blk.%d.attn_k.weight"
|
|
#define TN_ATTN_V "blk.%d.attn_v.weight"
|
|
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
|
|
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
|
|
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
|
|
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
|
|
#define TN_FFN_UP "blk.%d.ffn_up.weight"
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
|
#define LLAMA_FILE_VERSION_GGJT_V3 3
|
|
|
|
#define TOKENIZER_NAME "llama"
|
|
#define UNKNOWN_TOKEN_ID 0
|
|
#define BOS_TOKEN_ID 1
|
|
#define EOS_TOKEN_ID 2
|
|
|
|
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
|
typedef struct {
|
|
int dim; // transformer dimension
|
|
int hidden_dim; // for ffn layers
|
|
int n_layers; // number of layers
|
|
int n_heads; // number of query heads
|
|
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
|
|
int vocab_size; // vocabulary size, usually 256 (byte-level)
|
|
int seq_len; // max sequence length
|
|
} Config;
|
|
|
|
typedef struct {
|
|
// token embedding table
|
|
float* token_embedding_table; // (vocab_size, dim)
|
|
// weights for rmsnorms
|
|
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
|
float* rms_ffn_weight; // (layer, dim)
|
|
// weights for matmuls
|
|
float* wq; // (layer, dim, dim)
|
|
float* wk; // (layer, dim, dim)
|
|
float* wv; // (layer, dim, dim)
|
|
float* wo; // (layer, dim, dim)
|
|
// weights for ffn
|
|
float* w1; // (layer, hidden_dim, dim)
|
|
float* w2; // (layer, dim, hidden_dim)
|
|
float* w3; // (layer, hidden_dim, dim)
|
|
// final rmsnorm
|
|
float* rms_final_weight; // (dim,)
|
|
// freq_cis for RoPE relatively positional embeddings
|
|
// float* freq_cis_real; // (seq_len, dim/2)
|
|
// float* freq_cis_imag; // (seq_len, dim/2)
|
|
// (optional) classifier weights for the logits, on the last layer
|
|
float* wcls;
|
|
} TransformerWeights;
|
|
|
|
void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
|
// we calloc instead of malloc to keep valgrind happy
|
|
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
|
|
|
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
|
|
|
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
|
|
|
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
|
|
|
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
|
|
|
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
|
|
|
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
|
|
|
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
|
|
|
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
|
|
|
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
|
|
|
w->rms_final_weight = new float[p->dim]();
|
|
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
|
|
|
if (shared_weights) {
|
|
w->wcls = NULL;
|
|
} else {
|
|
w->wcls = new float[p->vocab_size * p->dim]();
|
|
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
|
}
|
|
}
|
|
|
|
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
|
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
|
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
|
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
|
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
|
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
|
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
|
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
|
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
|
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
|
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
|
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
|
|
|
// Skip freq_cis_real & freq_cis_imag
|
|
int head_size = p->dim / p->n_heads;
|
|
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
|
|
|
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
|
|
|
// Check we didn't forget to read anything
|
|
auto curr = ftell(f);
|
|
fseek(f, 0, SEEK_END);
|
|
auto end = ftell(f);
|
|
if (curr != end) {
|
|
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void free_weights(TransformerWeights* w) {
|
|
delete w->token_embedding_table;
|
|
delete w->rms_att_weight;
|
|
delete w->rms_ffn_weight;
|
|
delete w->wq;
|
|
delete w->wk;
|
|
delete w->wv;
|
|
delete w->wo;
|
|
delete w->w1;
|
|
delete w->w2;
|
|
delete w->w3;
|
|
delete w->rms_final_weight;
|
|
if (w->wcls) delete w->wcls;
|
|
}
|
|
|
|
void print_sample_weights(TransformerWeights *w){
|
|
printf("----- Quick print of first of the weight vales of all the variables\n");
|
|
printf("%f\n", w->token_embedding_table[0]);
|
|
printf("%f\n", w->rms_att_weight[0]);
|
|
printf("%f\n", w->rms_ffn_weight[0]);
|
|
|
|
printf("%f\n", w->wq[0]);
|
|
printf("%f\n", w->wk[0]);
|
|
printf("%f\n", w->wv[0]);
|
|
printf("%f\n", w->wo[0]);
|
|
printf("%f\n", w->w1[0]);
|
|
printf("%f\n", w->w2[0]);
|
|
printf("%f\n", w->w3[0]);
|
|
printf("%f\n", w->rms_att_weight[0]);
|
|
if (w->wcls) printf("%f\n", w->wcls[0]);
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
|
|
|
|
struct llama_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
using ttype = llama_token_type;
|
|
|
|
struct token_data {
|
|
token text;
|
|
float score;
|
|
ttype type;
|
|
};
|
|
|
|
std::unordered_map<token, id> token_to_id;
|
|
std::vector<token_data> id_to_token;
|
|
};
|
|
|
|
struct my_llama_hparams {
|
|
uint32_t n_vocab = 32000;
|
|
uint32_t n_ctx = 512; // this is provided as user input?
|
|
uint32_t n_embd = 4096;
|
|
uint32_t n_ff = 11008;
|
|
uint32_t n_mult = 4;
|
|
uint32_t n_head = 32;
|
|
uint32_t n_layer = 32;
|
|
uint32_t n_rot = 64;
|
|
bool operator!=(const my_llama_hparams& other) const {
|
|
return memcmp(this, &other, sizeof(my_llama_hparams));
|
|
}
|
|
};
|
|
|
|
struct my_llama_layer {
|
|
// normalization
|
|
struct ggml_tensor * attention_norm;
|
|
|
|
// attention
|
|
struct ggml_tensor * wq;
|
|
struct ggml_tensor * wk;
|
|
struct ggml_tensor * wv;
|
|
struct ggml_tensor * wo;
|
|
|
|
// normalization
|
|
struct ggml_tensor * ffn_norm;
|
|
|
|
// ff
|
|
struct ggml_tensor * w1;
|
|
struct ggml_tensor * w2;
|
|
struct ggml_tensor * w3;
|
|
};
|
|
|
|
struct my_llama_model {
|
|
struct ggml_context * ctx = NULL;
|
|
|
|
std::string name;
|
|
|
|
my_llama_hparams hparams;
|
|
|
|
struct ggml_tensor * tok_embeddings;
|
|
|
|
struct ggml_tensor * norm;
|
|
struct ggml_tensor * output;
|
|
|
|
std::vector<my_llama_layer> layers;
|
|
|
|
uint32_t train_its = 0;
|
|
uint32_t train_samples = 0;
|
|
uint32_t train_tokens = 0;
|
|
};
|
|
|
|
struct train_params {
|
|
const char * fn_vocab_model;
|
|
const char * fn_llama2c_model;
|
|
const char * fn_llama2c_output_model;
|
|
const char * fn_train_data;
|
|
const char * fn_checkpoint_in;
|
|
const char * fn_checkpoint_out;
|
|
const char * fn_model_out;
|
|
|
|
uint32_t seed;
|
|
|
|
int n_ctx;
|
|
int n_embd;
|
|
int n_mult;
|
|
int n_head;
|
|
int n_layer;
|
|
int n_rotmax;
|
|
|
|
int n_threads;
|
|
int n_batch;
|
|
int n_examples;
|
|
int n_predict;
|
|
|
|
int print_info_interval;
|
|
int print_details_interval;
|
|
|
|
bool samples_start_after_nl;
|
|
bool use_adam;
|
|
bool use_flash;
|
|
bool use_scratch;
|
|
|
|
// only adam
|
|
int warmup;
|
|
int cos_decay_steps;
|
|
float cos_decay_restart;
|
|
float cos_decay_alpha;
|
|
|
|
int lbfgs_n_iter;
|
|
int adam_n_iter;
|
|
float adam_alpha;
|
|
float adam_decay;
|
|
|
|
int mem_model_gb;
|
|
int mem_compute_gb;
|
|
int mem_compute0_gb;
|
|
int mem_compute1_gb;
|
|
};
|
|
|
|
void print_params(struct my_llama_hparams * params) {
|
|
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
|
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
|
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
|
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
|
printf("%s: n_head: %d\n", __func__, params->n_head);
|
|
printf("%s: n_ff: %d\n", __func__, params->n_ff);
|
|
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
|
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
|
}
|
|
|
|
void init_model(struct my_llama_model * model) {
|
|
const auto & hparams = model->hparams;
|
|
|
|
const uint32_t n_embd = hparams.n_embd;
|
|
const uint32_t n_layer = hparams.n_layer;
|
|
const uint32_t n_vocab = hparams.n_vocab;
|
|
|
|
const uint32_t n_ff = hparams.n_ff;
|
|
struct ggml_context * ctx = model->ctx;
|
|
|
|
model->train_its = 0;
|
|
model->train_samples = 0;
|
|
model->train_tokens = 0;
|
|
|
|
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
|
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
|
|
|
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
|
|
|
|
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
|
|
|
// printing the per-layer allocations here so we dont print in the for loop.
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
|
|
|
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
|
|
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
|
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
|
|
|
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
|
ggml_set_name(model->norm, "norm.weight");
|
|
ggml_set_name(model->output, "output.weight");
|
|
|
|
model->layers.resize(n_layer);
|
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
std::string layers_i = "layers." + std::to_string(i);
|
|
|
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
|
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
|
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
|
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
|
|
|
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
|
|
|
|
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
|
|
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
|
|
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
|
|
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
|
|
|
|
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
|
|
|
|
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
|
|
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
|
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
|
}
|
|
}
|
|
|
|
float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
|
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
|
return *ptr;
|
|
}
|
|
|
|
int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
|
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
|
return *ptr;
|
|
}
|
|
|
|
void print_row(struct ggml_tensor * probs, int i) {
|
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
|
float p = get_f32_2d(probs, k, i);
|
|
printf(" %f", p);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
void print_matrix(struct ggml_tensor * probs) {
|
|
assert(probs->n_dims == 2);
|
|
for (int i = 0; i < probs->ne[1]; ++i) {
|
|
for (int k = 0; k < probs->ne[0]; ++k) {
|
|
float p = get_f32_2d(probs, k, i);
|
|
printf(" %.2f", p);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
#ifdef __MINGW32__
|
|
__attribute__((format(gnu_printf, 1, 2)))
|
|
#else
|
|
__attribute__((format(printf, 1, 2)))
|
|
#endif
|
|
#endif
|
|
static std::string format(const char * fmt, ...) {
|
|
va_list ap, ap2;
|
|
va_start(ap, fmt);
|
|
va_copy(ap2, ap);
|
|
int size = vsnprintf(NULL, 0, fmt, ap);
|
|
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
|
std::vector<char> buf(size + 1);
|
|
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
|
GGML_ASSERT(size2 == size);
|
|
va_end(ap2);
|
|
va_end(ap);
|
|
return std::string(buf.data(), size);
|
|
}
|
|
|
|
struct llama_file {
|
|
// use FILE * so we don't have to re-open the file to mmap
|
|
FILE * fp;
|
|
size_t size;
|
|
|
|
llama_file(const char * fname, const char * mode) {
|
|
fp = std::fopen(fname, mode);
|
|
if (fp == NULL) {
|
|
size = 0;
|
|
} else {
|
|
seek(0, SEEK_END);
|
|
size = tell();
|
|
seek(0, SEEK_SET);
|
|
}
|
|
}
|
|
|
|
size_t tell() const {
|
|
#ifdef _WIN32
|
|
__int64 ret = _ftelli64(fp);
|
|
#else
|
|
long ret = std::ftell(fp);
|
|
#endif
|
|
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
|
return (size_t) ret;
|
|
}
|
|
|
|
void seek(size_t offset, int whence) {
|
|
#ifdef _WIN32
|
|
int ret = _fseeki64(fp, (__int64) offset, whence);
|
|
#else
|
|
int ret = std::fseek(fp, (long) offset, whence);
|
|
#endif
|
|
GGML_ASSERT(ret == 0); // same
|
|
}
|
|
|
|
void read_raw(void * ptr, size_t size) {
|
|
if (size == 0) {
|
|
return;
|
|
}
|
|
errno = 0;
|
|
std::size_t ret = std::fread(ptr, size, 1, fp);
|
|
if (ferror(fp)) {
|
|
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
|
}
|
|
if (ret != 1) {
|
|
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
|
}
|
|
}
|
|
|
|
std::uint32_t read_u32() {
|
|
std::uint32_t ret;
|
|
read_raw(&ret, sizeof(ret));
|
|
return ret;
|
|
}
|
|
std::float_t read_f32() {
|
|
std::float_t ret;
|
|
read_raw(&ret, sizeof(ret));
|
|
return ret;
|
|
}
|
|
|
|
std::string read_string(std::uint32_t len) {
|
|
std::vector<char> chars(len);
|
|
read_raw(chars.data(), len);
|
|
return std::string(chars.data(), len);
|
|
}
|
|
|
|
~llama_file() {
|
|
if (fp) {
|
|
std::fclose(fp);
|
|
}
|
|
}
|
|
};
|
|
|
|
bool is_ggml_file(const char *filename) {
|
|
llama_file file(filename, "rb");
|
|
if (file.size < 4) {
|
|
return false;
|
|
}
|
|
uint32_t magic = file.read_u32();
|
|
return magic == GGUF_MAGIC;
|
|
}
|
|
|
|
static std::string llama_escape_whitespaces(const std::string& text) {
|
|
std::ostringstream out;
|
|
for (char c : text) {
|
|
if (c == ' ') out << "\xe2\x96\x81";
|
|
else out << c;
|
|
}
|
|
return out.str();
|
|
}
|
|
|
|
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
|
if (is_ggml_file(filename)) {
|
|
struct ggml_context * ctx_data = NULL;
|
|
|
|
struct gguf_init_params params = {
|
|
/*.no_alloc = */ false,
|
|
/*.ctx = */ &ctx_data,
|
|
};
|
|
|
|
struct gguf_context * ctx = gguf_init_from_file(filename, params);
|
|
GGML_ASSERT(ctx != NULL);
|
|
|
|
const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
|
|
GGML_ASSERT(model_idx >= 0);
|
|
std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
|
|
GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
|
|
|
|
const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
|
|
GGML_ASSERT(token_idx >= 0);
|
|
|
|
const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
|
|
GGML_ASSERT(score_idx >= 0);
|
|
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
|
|
|
|
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
|
|
GGML_ASSERT(toktype_idx >= 0);
|
|
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
|
|
|
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
|
|
|
vocab->id_to_token.resize(n_vocab);
|
|
|
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
|
std::string word = gguf_get_arr_str(ctx, token_idx, i);
|
|
|
|
vocab->token_to_id[word] = i;
|
|
|
|
auto & token_data = vocab->id_to_token[i];
|
|
token_data.text = std::move(word);
|
|
token_data.score = scores[i];
|
|
token_data.type = (llama_token_type) toktypes[i];
|
|
}
|
|
ggml_free(ctx_data);
|
|
gguf_free(ctx);
|
|
} else {
|
|
// assume llama2.c vocabulary
|
|
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
|
llama_file file(filename, "rb");
|
|
const int n_vocab = config->vocab_size;
|
|
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
|
vocab->id_to_token.resize(n_vocab);
|
|
for (llama_vocab::id id=0; id<n_vocab; ++id) {
|
|
float_t score = file.read_f32();
|
|
uint32_t len = file.read_u32();
|
|
std::string text = file.read_string(len);
|
|
|
|
unsigned char byte_val;
|
|
llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
|
|
if (id == UNKNOWN_TOKEN_ID) {
|
|
text = "<unk>";
|
|
type = LLAMA_TOKEN_TYPE_UNKNOWN;
|
|
} else if (id == BOS_TOKEN_ID) {
|
|
text = "<s>";
|
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
|
} else if (id == EOS_TOKEN_ID) {
|
|
text = "</s>";
|
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
|
} else if (text.empty()) {
|
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
|
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
|
|
// Text of byte tokens is already in the expected format.
|
|
type = LLAMA_TOKEN_TYPE_BYTE;
|
|
} else {
|
|
type = LLAMA_TOKEN_TYPE_NORMAL;
|
|
}
|
|
text = llama_escape_whitespaces(text);
|
|
|
|
vocab->id_to_token[id].text = text;
|
|
vocab->id_to_token[id].score = score;
|
|
vocab->id_to_token[id].type = type;
|
|
vocab->token_to_id.emplace(text, id);
|
|
}
|
|
}
|
|
}
|
|
|
|
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
|
|
int ct;
|
|
switch (gg_weights->n_dims){
|
|
case 1:
|
|
ct = 0;
|
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
|
*ptr = karpathy_weights[ct];
|
|
ct++;
|
|
}
|
|
break;
|
|
case 2:
|
|
ct = 0;
|
|
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
|
*ptr = karpathy_weights[ct];
|
|
ct++;
|
|
}
|
|
}
|
|
break;
|
|
case 3:
|
|
ct = 0;
|
|
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
|
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
|
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
|
*ptr = karpathy_weights[ct];
|
|
ct++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
|
|
// stuff AK weights into GG weights one by one.
|
|
// w->token_embedding_table -> model->tok_embeddings
|
|
// float* -> struct ggml_tensor
|
|
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
|
stuff_karpathy_weights_into_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
|
|
|
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
|
//print_row(model->norm, 0);
|
|
|
|
// for rms-att-weight
|
|
int row_length = model->hparams.n_embd;
|
|
int n_ff = model->hparams.n_ff;
|
|
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
|
auto & layer = model->layers[i];
|
|
// 1d
|
|
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
|
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
|
|
|
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
|
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
|
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
|
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
|
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
|
|
|
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
|
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
|
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
|
}
|
|
|
|
struct gguf_context * ctx = gguf_init_empty();
|
|
|
|
std::vector<const char*> tokens;
|
|
std::vector<float> scores;
|
|
std::vector<llama_token_type> token_types;
|
|
for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
|
|
tokens.push_back(token_data.text.c_str());
|
|
scores.push_back(token_data.score);
|
|
token_types.push_back(token_data.type);
|
|
}
|
|
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
|
|
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
|
|
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
|
|
|
|
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
|
|
|
|
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
|
|
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
|
|
|
|
// special tokens
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
|
|
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
|
|
|
|
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
|
|
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
|
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
|
// n_head_kv is optional, default to n_head
|
|
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
|
|
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
|
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
|
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
|
|
|
// write tensors
|
|
ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
|
|
gguf_add_tensor(ctx, model->tok_embeddings);
|
|
|
|
ggml_set_name(model->norm, TN_OUTPUT_NORM);
|
|
gguf_add_tensor(ctx, model->norm);
|
|
|
|
ggml_set_name(model->output, TN_OUTPUT);
|
|
gguf_add_tensor(ctx, model->output);
|
|
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
ggml_format_name(layer.wq, TN_ATTN_Q, i);
|
|
gguf_add_tensor(ctx, layer.wq);
|
|
|
|
ggml_format_name(layer.wk, TN_ATTN_K, i);
|
|
gguf_add_tensor(ctx, layer.wk);
|
|
|
|
ggml_format_name(layer.wv, TN_ATTN_V, i);
|
|
gguf_add_tensor(ctx, layer.wv);
|
|
|
|
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
|
|
gguf_add_tensor(ctx, layer.wo);
|
|
|
|
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
|
|
gguf_add_tensor(ctx, layer.attention_norm);
|
|
|
|
ggml_format_name(layer.w1, TN_FFN_GATE, i);
|
|
gguf_add_tensor(ctx, layer.w1);
|
|
|
|
ggml_format_name(layer.w2, TN_FFN_DOWN, i);
|
|
gguf_add_tensor(ctx, layer.w2);
|
|
|
|
ggml_format_name(layer.w3, TN_FFN_UP, i);
|
|
gguf_add_tensor(ctx, layer.w3);
|
|
|
|
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
|
|
gguf_add_tensor(ctx, layer.ffn_norm);
|
|
}
|
|
|
|
gguf_write_to_file(ctx, filename, false);
|
|
gguf_free(ctx);
|
|
}
|
|
|
|
struct train_params get_default_train_params() {
|
|
struct train_params params;
|
|
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
|
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
|
params.fn_train_data = "shakespeare.txt";
|
|
params.fn_checkpoint_in = "checkpoint.bin";
|
|
params.fn_checkpoint_out = "checkpoint.bin";
|
|
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
|
|
|
params.seed = -1;
|
|
|
|
params.n_ctx = 128;
|
|
params.n_embd = 256;
|
|
params.n_mult = 256;
|
|
params.n_head = 8;
|
|
params.n_layer = 16;
|
|
params.n_rotmax = 64;
|
|
|
|
params.n_threads = 6;
|
|
params.n_batch = 8;
|
|
params.n_examples = 8;
|
|
params.n_predict = 1024;
|
|
|
|
params.print_info_interval = 1;
|
|
params.print_details_interval = 2;
|
|
|
|
params.samples_start_after_nl = false;
|
|
params.use_adam = true;
|
|
params.use_flash = true;
|
|
params.use_scratch = true;
|
|
|
|
// only adam
|
|
params.warmup = 100;
|
|
params.cos_decay_steps = 1000;
|
|
params.cos_decay_restart = 1.1f;
|
|
params.cos_decay_alpha = 0.0f;
|
|
|
|
params.lbfgs_n_iter = 16;
|
|
params.adam_n_iter = 16;
|
|
params.adam_alpha = 1e-3f;
|
|
params.adam_decay = 1e-3f;
|
|
|
|
params.mem_model_gb = 2;
|
|
params.mem_compute_gb = 24;
|
|
params.mem_compute0_gb = 8;
|
|
params.mem_compute1_gb = 2;
|
|
|
|
return params;
|
|
}
|
|
|
|
void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
|
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
|
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
bool params_parse(int argc, char ** argv, struct train_params * params) {
|
|
bool invalid_param = false;
|
|
bool reqd_param_found = false;
|
|
std::string arg;
|
|
struct train_params default_params = get_default_train_params();
|
|
const std::string arg_prefix = "--";
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
arg = argv[i];
|
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
|
}
|
|
|
|
if (arg == "--copy-vocab-from-model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->fn_vocab_model = argv[i];
|
|
} else if (arg == "--llama2c-model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
reqd_param_found = true;
|
|
params->fn_llama2c_model = argv[i];
|
|
} else if (arg == "--llama2c-output-model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->fn_llama2c_output_model = argv[i];
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
print_usage(argc, argv, &default_params);
|
|
exit(0);
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (invalid_param) {
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
if (!reqd_param_found){
|
|
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
|
|
print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::string basename(const std::string &path) {
|
|
size_t pos = path.find_last_of("/");
|
|
if (pos == std::string::npos) {
|
|
return path;
|
|
}
|
|
return path.substr(pos + 1);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
struct train_params params = get_default_train_params();
|
|
if (!params_parse(argc, argv, ¶ms)) {
|
|
return 1;
|
|
}
|
|
Config config;
|
|
TransformerWeights weights;
|
|
{
|
|
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
|
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
|
// read in the config header
|
|
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
|
auto shared_weights = config.vocab_size > 0;
|
|
config.vocab_size = abs(config.vocab_size);
|
|
|
|
// read in the Transformer weights
|
|
malloc_weights(&weights, &config, shared_weights);
|
|
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
|
fclose(file);
|
|
}
|
|
|
|
struct llama_vocab vocab;
|
|
load_vocab(params.fn_vocab_model, &config, &vocab);
|
|
|
|
struct my_llama_model model;
|
|
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
|
model.hparams.n_ctx = params.n_ctx;
|
|
model.hparams.n_embd = config.dim; //params.n_embd;
|
|
model.hparams.n_ff = config.hidden_dim;
|
|
model.hparams.n_mult = 32;//params.n_mult;
|
|
model.hparams.n_head = config.n_heads; //params.n_head;
|
|
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
|
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
|
print_params(&model.hparams);
|
|
struct ggml_init_params lcparams;
|
|
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
|
lcparams.mem_buffer = NULL;
|
|
lcparams.no_alloc = false;
|
|
|
|
model.ctx = ggml_init(lcparams);
|
|
|
|
init_model(&model);
|
|
model.name = basename(params.fn_llama2c_model);
|
|
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
|
|
|
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
|
|
|
ggml_free(model.ctx);
|
|
free_weights(&weights);
|
|
return 0;
|
|
}
|