llama.cpp/examples/batched
bmwl f486f6e1e5
ggml : add numa options (#5377)
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverted Makefile

* Fixed include

* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables

* removed trailing whitespace

* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverting Makefile

* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet

* Removing MIRROR_MODE code for this PR

* Removing last bit of MIRROR_MODE code for this PR

* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static

* Fixed lingering init_llama_backend() bool calls in tests and examples

* Remote enum llama_numa_strategies

* Revert bad merge with dynatemp flags

* add missing enum ggml_numa_strategies declaration and revert sync problem with master

* add missing enum ggml_numa_strategies declaration

* fixed ggml_init_numa variable

* Update ggml.h

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges

* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples

* Fix up some boolean vs enum comparisons

* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype

* Update ggml.h

Align enum values

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

Remove whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

align paremeters

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example

* Update ggml.c

simplified return for platforms without NUMA support

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* removed redundant else from cli argument processing of --numa

* whitespace

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 11:31:07 +02:00
..
batched.cpp ggml : add numa options (#5377) 2024-02-16 11:31:07 +02:00
CMakeLists.txt llama : custom attention mask + parallel decoding + no context swaps (#3228) 2023-09-28 19:04:36 +03:00
README.md llama : custom attention mask + parallel decoding + no context swaps (#3228) 2023-09-28 19:04:36 +03:00

llama.cpp/example/batched

The example demonstrates batched generation from a given prompt

./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4

...

main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113

 Hello my name is

main: generating 4 sequences ...

main: stream 0 finished
main: stream 1 finished
main: stream 2 finished
main: stream 3 finished

sequence 0:

Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b

sequence 1:

Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between

sequence 2:

Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am

sequence 3:

Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and

main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s

llama_print_timings:        load time =   587.00 ms
llama_print_timings:      sample time =     2.56 ms /   112 runs   (    0.02 ms per token, 43664.72 tokens per second)
llama_print_timings: prompt eval time =  4089.11 ms /   118 tokens (   34.65 ms per token,    28.86 tokens per second)
llama_print_timings:        eval time =     0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings:       total time =  4156.04 ms