llama.cpp/examples/server/tests/unit/test_chat_completion.py
haopeng 64ed2091b2
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
server: Add "tokens per second" information in the backend (#10548)
* add cmake rvv support

* add timings

* remove space

* update readme

* fix

* fix code

* remove empty line

* add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-02 14:45:54 +01:00

166 lines
6.0 KiB
Python

import pytest
from openai import OpenAI
from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
@pytest.mark.parametrize(
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
[
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
]
)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
global server
server.start()
res = server.make_request("POST", "/chat/completions", data={
"model": model,
"max_tokens": max_tokens,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
})
assert res.status_code == 200
assert res.body["usage"]["prompt_tokens"] == n_prompt
assert res.body["usage"]["completion_tokens"] == n_predicted
choice = res.body["choices"][0]
assert "assistant" == choice["message"]["role"]
assert match_regex(re_content, choice["message"]["content"])
if truncated:
assert choice["finish_reason"] == "length"
else:
assert choice["finish_reason"] == "stop"
@pytest.mark.parametrize(
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
[
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
]
)
def test_chat_completion_stream(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
global server
server.start()
res = server.make_stream_request("POST", "/chat/completions", data={
"model": model,
"max_tokens": max_tokens,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
"stream": True,
})
content = ""
for data in res:
choice = data["choices"][0]
if choice["finish_reason"] in ["stop", "length"]:
assert data["usage"]["prompt_tokens"] == n_prompt
assert data["usage"]["completion_tokens"] == n_predicted
assert "content" not in choice["delta"]
assert match_regex(re_content, content)
# FIXME: not sure why this is incorrect in stream mode
# if truncated:
# assert choice["finish_reason"] == "length"
# else:
# assert choice["finish_reason"] == "stop"
else:
assert choice["finish_reason"] is None
content += choice["delta"]["content"]
def test_chat_completion_with_openai_library():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
messages=[
{"role": "system", "content": "Book"},
{"role": "user", "content": "What is the best book"},
],
max_tokens=8,
seed=42,
temperature=0.8,
)
print(res)
assert res.choices[0].finish_reason == "stop"
assert res.choices[0].message.content is not None
assert match_regex("(Suddenly)+", res.choices[0].message.content)
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
({"type": "json_object"}, 10, "(\\{|John)+"),
({"type": "sound"}, 0, None),
# invalid response format (expected to fail)
({"type": "json_object", "schema": 123}, 0, None),
({"type": "json_object", "schema": {"type": 123}}, 0, None),
({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
])
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
global server
server.start()
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": n_predicted,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
{"role": "user", "content": "Write an example"},
],
"response_format": response_format,
})
if re_content is not None:
assert res.status_code == 200
choice = res.body["choices"][0]
assert match_regex(re_content, choice["message"]["content"])
else:
assert res.status_code != 200
assert "error" in res.body
@pytest.mark.parametrize("messages", [
None,
"string",
[123],
[{}],
[{"role": 123}],
[{"role": "system", "content": 123}],
# [{"content": "hello"}], # TODO: should not be a valid case
[{"role": "system", "content": "test"}, {}],
])
def test_invalid_chat_completion_req(messages):
global server
server.start()
res = server.make_request("POST", "/chat/completions", data={
"messages": messages,
})
assert res.status_code == 400 or res.status_code == 500
assert "error" in res.body
def test_chat_completion_with_timings_per_token():
global server
server.start()
res = server.make_stream_request("POST", "/chat/completions", data={
"max_tokens": 10,
"messages": [{"role": "user", "content": "test"}],
"stream": True,
"timings_per_token": True,
})
for data in res:
assert "timings" in data
assert "prompt_per_second" in data["timings"]
assert "predicted_per_second" in data["timings"]
assert "predicted_n" in data["timings"]
assert data["timings"]["predicted_n"] <= 10